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1 About

This document is part of a series of notes about math and machine learning. You are free to
distribute it as you wish. The latest version can be found at http://gwthomas.github.io/notes.
Please report any errors to gwthomas@stanford.edu.

Convexity is a term that pertains to both sets and functions. For functions, there are different
degrees of convexity, and how convex a function is tells us a lot about its minima: do they exist,
are they unique, how quickly can we find them using optimization algorithms, etc. Here we present
basic results regarding convexity, strict convexity, and strong convexity.

2 Convex sets

A set X ⊆ Rd is convex if
tx + (1− t)y ∈ X

for all x,y ∈ X and all t ∈ [0, 1].

Geometrically, this means that all the points on the line segment between any two points in X are
also in X . See Figure 1 for a visual.

Why do we care whether or not a set is convex? We will see later that the nature of minima can
depend greatly on whether or not the feasible set is convex. Undesirable pathological results can
occur when we allow the feasible set to be arbitrary, so for proofs we will need to assume that it is
convex. Fortunately, we often want to minimize over all of Rd, which is easily seen to be a convex
set.

3 Basics of convex functions

In the remainder of this section, assume f : Rd → R unless otherwise noted. We’ll start with the
definitions and then give some results.

A function f is convex if
f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y)

for all x,y ∈ dom f and all t ∈ [0, 1].

If the inequality holds strictly (i.e. < rather than ≤) for all t ∈ (0, 1) and x 6= y, then we say that
f is strictly convex.
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(a) A convex set (b) A non-convex set

Figure 1: What convex sets look like

A function f is strongly convex with parameter m (or m-strongly convex) if the function

x 7→ f(x)− m

2
‖x‖22

is convex.

These conditions are given in increasing order of strength; strong convexity implies strict convexity
which implies convexity.

Geometrically, convexity means that the line segment between two points on the graph of f lies on
or above the graph itself. See Figure 2 for a visual.

Strict convexity means that the line segment lies strictly above the graph of f , except at the segment
endpoints. (So actually the function in the figure appears to be strictly convex.)

3.1 Consequences of convexity

Why do we care if a function is (strictly/strongly) convex?

Basically, our various notions of convexity have implications about the nature of minima. It should
not be surprising that the stronger conditions tell us more about the minima.

Proposition 1. Let X be a convex set. If f is convex, then any local minimum of f in X is also a
global minimum.

Proof. Suppose f is convex, and let x∗ be a local minimum of f in X . Then for some neighborhood
N ⊆ X about x∗, we have f(x) ≥ f(x∗) for all x ∈ N . Suppose towards a contradiction that there
exists x̃ ∈ X such that f(x̃) < f(x∗).

Consider the line segment x(t) = tx∗ + (1− t)x̃, t ∈ [0, 1], noting that x(t) ∈ X by the convexity of
X . Then by the convexity of f ,

f(x(t)) ≤ tf(x∗) + (1− t)f(x̃) < tf(x∗) + (1− t)f(x∗) = f(x∗)
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Figure 2: What convex functions look like

for all t ∈ (0, 1).

We can pick t to be sufficiently close to 1 that x(t) ∈ N ; then f(x(t)) ≥ f(x∗) by the definition of
N , but f(x(t)) < f(x∗) by the above inequality, a contradiction.

It follows that f(x∗) ≤ f(x) for all x ∈ X , so x∗ is a global minimum of f in X .

Proposition 2. Let X be a convex set. If f is strictly convex, then there exists at most one local
minimum of f in X . Consequently, if it exists it is the unique global minimum of f in X .

Proof. The second sentence follows from the first, so all we must show is that if a local minimum
exists in X then it is unique.

Suppose x∗ is a local minimum of f in X , and suppose towards a contradiction that there exists a
local minimum x̃ ∈ X such that x̃ 6= x∗.

Since f is strictly convex, it is convex, so x∗ and x̃ are both global minima of f in X by the previous
result. Hence f(x∗) = f(x̃). Consider the line segment x(t) = tx∗ + (1− t)x̃, t ∈ [0, 1], which again
must lie entirely in X . By the strict convexity of f ,

f(x(t)) < tf(x∗) + (1− t)f(x̃) = tf(x∗) + (1− t)f(x∗) = f(x∗)

for all t ∈ (0, 1). But this contradicts the fact that x∗ is a global minimum. Therefore if x̃ is a local
minimum of f in X , then x̃ = x∗, so x∗ is the unique minimum in X .

It is worthwhile to examine how the feasible set affects the optimization problem. We will see why
the assumption that X is convex is needed in the results above.

Consider the function f(x) = x2, which is a strictly convex function. The unique global minimum
of this function in R is x = 0. But let’s see what happens when we change the feasible set X .

(i) X = {1}: This set is actually convex, so we still have a unique global minimum. But it is not
the same as the unconstrained minimum!
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(ii) X = R\{0}: This set is non-convex, and we can see that f has no minima in X . For any point
x ∈ X , one can find another point y ∈ X such that f(y) < f(x).

(iii) X = (−∞,−1] ∪ [0,∞): This set is non-convex, and we can see that there is a local minimum
(x = −1) which is distinct from the global minimum (x = 0).

(iv) X = (−∞,−1] ∪ [1,∞): This set is non-convex, and we can see that there are two global
minima (x = ±1).

3.2 Showing that a function is convex

Hopefully the previous section has convinced the reader that convexity is an important property.
Next we turn to the issue of showing that a function is (strictly/strongly) convex. It is of course
possible (in principle) to directly show that the condition in the definition holds, but this is usually
not the easiest way.

Proposition 3. Norms are convex.

Proof. Let ‖ · ‖ be a norm on a vector space V . Then for all x,y ∈ V and t ∈ [0, 1],

‖tx + (1− t)y‖ ≤ ‖tx‖+ ‖(1− t)y‖ = |t|‖x‖+ |1− t|‖y‖ = t‖x‖+ (1− t)‖y‖

where we have used respectively the triangle inequality, the homogeneity of norms, and the fact that
t and 1− t are nonnegative. Hence ‖ · ‖ is convex.

Proposition 4. Suppose f is differentiable. Then f is convex if and only if

f(x) ≥ f(y) + 〈∇f(y),x− y〉

for all x,y ∈ dom f .

Proof. ( =⇒ ) Suppose f is convex, i.e.

f(tx + (1− t)y) ≤ tf(x) + (1− t)f(y) = f(y) + t(f(x)− f(y))

for all x,y ∈ dom f and all t ∈ [0, 1]. Rearranging gives

f(y + t(x− y))− f(y)

t
≤ f(x)− f(y)

As t→ 0, the left-hand side becomes 〈∇f(y),x− y〉, so the result follows.

(⇐= ) Suppose
f(x) ≥ f(y) + 〈∇f(y),x− y〉

for all x,y ∈ dom f . Fix x,y ∈ dom f , t ∈ [0, 1], and define z = tx + (1− t)y. Then

f(x) ≥ f(z) + 〈∇f(z),x− z〉
f(y) ≥ f(z) + 〈∇f(z),y − z〉

so

tf(x) + (1− t)f(y) ≥ t
(
f(z) + 〈∇f(z),x− z〉

)
+ (1− t)

(
f(z) + 〈∇f(z),y − z〉

)
= f(z) + 〈∇f(z), t(x− z) + (1− t)(y − z)〉
= f(tx + (1− t)y) + 〈∇f(z), tx + (1− t)y − z︸ ︷︷ ︸

0

〉

= f(tx + (1− t)y)

implying that f is convex.
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Proposition 5. Suppose f is twice differentiable. Then

(i) f is convex if and only if ∇2f(x) � 0 for all x ∈ dom f .

(ii) If ∇2f(x) � 0 for all x ∈ dom f , then f is strictly convex.

(iii) f is m-strongly convex if and only if ∇2f(x) � mI for all x ∈ dom f .

Proof. Omitted.

Proposition 6. If f is convex and α ≥ 0, then αf is convex.

Proof. Suppose f is convex and α ≥ 0. Then for all x,y ∈ dom(αf) = dom f ,

(αf)(tx + (1− t)y) = αf(tx + (1− t)y)

≤ α
(
tf(x) + (1− t)f(y)

)
= t(αf(x)) + (1− t)(αf(y))

= t(αf)(x) + (1− t)(αf)(y)

so αf is convex.

Proposition 7. If f and g are convex, then f + g is convex. Furthermore, if g is strictly convex,
then f + g is strictly convex, and if g is m-strongly convex, then f + g is m-strongly convex.

Proof. Suppose f and g are convex. Then for all x,y ∈ dom(f + g) = dom f ∩ dom g,

(f + g)(tx + (1− t)y) = f(tx + (1− t)y) + g(tx + (1− t)y)

≤ tf(x) + (1− t)f(y) + g(tx + (1− t)y) convexity of f

≤ tf(x) + (1− t)f(y) + tg(x) + (1− t)g(y) convexity of g

= t(f(x) + g(x)) + (1− t)(f(y) + g(y))

= t(f + g)(x) + (1− t)(f + g)(y)

so f + g is convex.

If g is strictly convex, the second inequality above holds strictly for x 6= y and t ∈ (0, 1), so f + g is
strictly convex.

If g is m-strongly convex, then the function h(x) ≡ g(x)− m
2 ‖x‖

2
2 is convex, so f +h is convex. But

(f + h)(x) ≡ f(x) + h(x) ≡ f(x) + g(x)− m

2
‖x‖22 ≡ (f + g)(x)− m

2
‖x‖22

so f + g is m-strongly convex.

Proposition 8. If f1, . . . , fn are convex and α1, . . . , αn ≥ 0, then

n∑
i=1

αifi

is convex.

Proof. Follows from the previous two propositions by induction.
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Proposition 9. If f is convex, then g(x) ≡ f(Ax + b) is convex for any appropriately-sized A and
b.

Proof. Suppose f is convex and g is defined like so. Then for all x,y ∈ dom g,

g(tx + (1− t)y) = f(A(tx + (1− t)y) + b)

= f(tAx + (1− t)Ay + b)

= f(tAx + (1− t)Ay + tb + (1− t)b)

= f(t(Ax + b) + (1− t)(Ay + b))

≤ tf(Ax + b) + (1− t)f(Ay + b) convexity of f

= tg(x) + (1− t)g(y)

Thus g is convex.

Proposition 10. If f and g are convex, then h(x) ≡ max{f(x), g(x)} is convex.

Proof. Suppose f and g are convex and h is defined like so. Then for all x,y ∈ domh,

h(tx + (1− t)y) = max{f(tx + (1− t)y), g(tx + (1− t)y)}
≤ max{tf(x) + (1− t)f(y), tg(x) + (1− t)g(y)}
≤ max{tf(x), tg(x)}+ max{(1− t)f(y), (1− t)g(y)}
= tmax{f(x), g(x)}+ (1− t) max{f(y), g(y)}
= th(x) + (1− t)h(y)

Note that in the first inequality we have used convexity of f and g plus the fact that a ≤ c, b ≤ d
implies max{a, b} ≤ max{c, d}. In the second inequality we have used the fact that max{a+b, c+d} ≤
max{a, c}+ max{b, d}.
Thus h is convex.

3.3 Examples

A good way to gain intuition about the distinction between convex, strictly convex, and strongly
convex functions is to consider examples where the stronger property fails to hold.

Functions that are convex but not strictly convex:

(i) f(x) = w>x + α for any w ∈ Rd, α ∈ R. Such a function is called an affine function, and it
is both convex and concave. (In fact, a function is affine if and only if it is both convex and
concave.) Note that linear functions and constant functions are special cases of affine functions.

(ii) f(x) = ‖x‖1

Functions that are strictly but not strongly convex:

(i) f(x) = x4. This example is interesting because it is strictly convex but you cannot show this
fact via a second-order argument (since f ′′(0) = 0).

(ii) f(x) = exp(x). This example is interesting because it’s bounded below but has no local
minimum.

(iii) f(x) = − log x. This example is interesting because it’s strictly convex but not bounded below.
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Functions that are strongly convex:

(i) f(x) = ‖x‖22
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