
Markov Decision Processes

Garrett Thomas

April 6, 2020

1 About

This document is part of a series of notes about math and machine learning. You are free to distribute
it as you wish. The latest version can be found at https://ai.stanford.edu/~gwthomas/notes.
Any errors are entirely my own – please report them to gwthomas@stanford.edu.

2 Markov Decision Processes

Markov decision processes (MDPs) provide a mathematical framework in which to study
discrete-time1 decision-making problems. Formally, a Markov decision process is defined by a tuple
(S,A, µ0, T, r, γ, H), where

1. S is the state space, which contains all possible states the system may be in.

2. A is the action space, which contains all possible actions the agent may take when interacting
with the system.

3. µ0 ∈ ∆(S) is the initial state distribution, a probability distribution over states in which
the system will be initialized.

4. T : S ×A → ∆(S) is the transition dynamics. For each state s and action a, T (s, a) yields
a probability distribution over states that the system may transition into when taking action
a from state s. We sometimes write the conditional density/mass of transitioning into state s′

as T (s′ | s, a).

5. r : S×A×S → R is the reward function. The value r(s, a, s′) gives the amount of “reward”
associated transitioning into state s′ when taking action a from state s.

6. γ ∈ [0, 1] is the discount factor, which determines how much future rewards should be
“discounted” when making decisions. A value of γ = 0 means that we don’t care about future
rewards at all, while a value of γ = 1 indicates that rewards in the distant future should count
just as much as the reward at the next time-step.

7. H is the horizon, the maximum possible number of time-steps in each episode. It may be a
positive integer (the finite-horizon case) or ∞ (the infinite-horizon case).

1 One can consider continuous-time MDPs as well, but this is rare (or rather, usually falls under the domain of
control theory), so we will assume that all MDPs are discrete-time.

1

https://ai.stanford.edu/~gwthomas/notes

Usually γ = 1 for finite-horizon problems, but for infinite-horizon problems we require γ < 1 for the
purposes of analysis.

An MDP is said to be finite if |S| < ∞ and |A| < ∞. A finite MDP is usually described as tabular
if S and A are small enough that we can store vectors of dimension |S ×A| in a table.

A policy π determines what action(s) to take at each state.2 A stochastic policy π : S → ∆(A)
assigns a distribution over actions to each state. As with the dynamics, we write the action distri-
bution that π assigns to state s as π(s), e.g. a ∼ π(s), but the conditional probability mass/density
of action a in state s when executing policy π as π(a | s). A deterministic policy is a function
π : S → A that directly maps a state to an action to take when in that state. One can (and we
generally will) consider deterministic policies as a special case of stochastic policies where every
distribution produced by the policy is a point mass (i.e. a Dirac measure) on the prescribed action.3

If we write a = π(s) instead of a ∼ π(s), we are referring to a deterministic policy.

We consider the common episodic setting, in which the system is periodically reset to some (possibly
random) initial state. Each episode is assumed to proceed as follows:

(1) Sample the initial state s0 ∼ µ0.

(2) For t = 0, 1, 2, . . . , H

(i) Sample an action at ∼ π(st) from the policy

(ii) Sample the next state st+1 ∼ T (st, at) according to the dynamics

(iii) Observe a reward rt = r(st, at, st+1)

Note that the distribution of the next state st+1 depends only on the current state st and action at,
rather than on the whole sequence of states and actions encountered up to time t:

∀t, p(st+1 | st, at) = p(st+1 | s1, a1, . . . , st, at)

This is the Markov property, hence the “M” in “MDP”.

The collection of all states and actions encountered during an episode can be collected into a tra-
jectory τ = (s0, a0, s1, a1, . . . , aH−1, sH). The return associated with a trajectory τ is the sum of
all discounted rewards

R(τ) :=

H!

t=0

γtrt

The expected return of a policy π is denoted

η(π) := Eπ[R(τ)]

where Eπ means that all actions are sampled according to the policy π. There is also stochasticity
coming from the initial state and the dynamics, but this is typically not reflected in the notation
unless there is ambiguity.

The standard objective in reinforcement learning is to find a policy which maximizes the expected
return:

π" ∈ argmax
π∈Π

η(π)

where Π is some family of policies under consideration.

2More generally, the policy can also depend on the time t. Policies which do not depend on time (which is what
we consider here) are described as stationary. It turns out that in infinite-horizon MDPs, it is sufficient to consider
stationary policies, but in finite-horizon MDPs stationary policies may not be optimal

3These are, of course, not literally the same mathematical objects, but they are effectively the same for our
purposes.

2

3 Value functions

It is often useful to estimate how “good” a given state (and action) is. The standard tools for this
are the Q-function (which considers a given state and action) and the value function (which
considers a state only). These are defined (assuming H = ∞) as

Qπ(s, a) := Eπ

"

#
∞!

t=0

γtrt

$$$ s0 = s, a0 = a

%

&

V π(s) := Eπ

"

#
∞!

t=0

γtrt

$$$ s0 = s

%

&

In words, Qπ(s, a) gives the expected return if you start in state s, take action a, and then act
according to π thereafter. Similarly, V π(s) gives the expected return if you start in state s and act
according to π.

There is a lot to say about these functions. First, we note the following identities which follow
directly from the law of total expectation:

η(π) = E
s0∼µ0

[V π(s0)]

and
V π(s) = E

a∼π(s)
[Qπ(s, a)]

Another very useful relationship is the following:

Proposition 1.
Qπ(s, a) = E

s′∼T (s,a)
[r(s, a, s′) + γV π(s′)]

Proof. The key is to split the infinite sum into the immediate next reward plus the remaining terms.
A factor of γ can be pulled out and the index t shifted by one:

Qπ(s, a) = Eπ

"

#
∞!

t=0

γtr(st, at, st+1)
$$$ s0 = s, a0 = a

%

&

= Eπ

"

#r(s0, a0, s1) + γ

∞!

t=1

γt−1r(st, at, st+1)
$$$ s0 = s, a0 = a

%

&

= E
s′∼T (s,a)

"

'#r(s, a, s′) + γEπ

"

#
∞!

t=1

γt−1r(st, at, st+1)
$$$ s1 = s′

%

&

%

(&

= E
s′∼T (s,a)

"

'#r(s, a, s′) + γEπ

"

#
∞!

t=0

γtr(st, at, st+1)
$$$ s0 = s′

%

&

%

(&

= E
s′∼T (s,a)

[r(s, a, s′) + γV π(s′)]

as claimed.

In fact, the same technique can be used to show a more general statement:

Qπ(s, a) = Eπ

)
rt + γrt+1 + γ2rt+2 + · · ·+ γk−1rt+k−1 + γkV π(st+k)

$$$ st = s, at = a

*

3

3.1 Optimal value functions

Recall that our goal is to find an optimal policy π" ∈ argmaxπ η(π). We define the optimal value
functions

Q"(s, a) = max
π

Qπ(s, a)

V "(s) = max
π

V π(s)

The optimal value functions are useful for studying the optimality of policies, and for deriving
optimal policies.

Proposition 2. The following are equivalent:

1. π ∈ argmaxπ η(π)

2. If A"(s) = argmaxa Q
"(s, a) is the set of optimal actions at state s, then suppπ(s) ⊆ A"(s)

for all s ∈ S.

3. Qπ = Q"

4. V π = V "

In particular, if we define the greedy policy with respect to Q ∈ RS×A by

πQ(s) = argmax
a

Q(s, a)

then πQ! is an optimal policy.

We also have the following relationships between V " and Q".

Proposition 3.

V "(s) = max
a

Q"(s, a)

Q"(s, a) = E
s′∼T (s,a)

+
r(s, a, s′) + γV "(s′)

,

Proof. For the first identity, we have

V "(s) = max
π

V π(s)

= max
π

E
a∼π(s)

[Qπ(s, a)]

≤ max
π

E
a∼π(s)

[Q"(s, a)]

= max
a

Q"(s, a)

In fact, the inequality holds with equality because we can choose π so that simultaneously π ∈
argmaxπ Q

π(s, a) and π(s) = argmaxa Q
"(s, a).

For the second identity,

Q"(s, a) = max
π

Qπ(s, a)

= max
π

E
s′∼T (s,a)

[r(s, a, s′) + γV π(s′)]

= E
s′∼T (s,a)

)
r(s, a, s′) + γmax

π
V π(s′)

*

= E
s′∼T (s,a)

+
r(s, a, s′) + γV "(s′)

,

4

3.2 Bellman equations and operators

Combining previously shown relationships between the value functions, we can derive the following
recurrences, known as Bellman equations (after Richard Bellman):

Qπ(s, a) = E
s′∼T (s,a)

)
r(s, a, s′) + γ E

a′∼π(s′)
Qπ(s′, a′)

*

Q"(s, a) = E
s′∼T (s,a)

)
r(s, a, s′) + γmax

a′
Q"(s′, a′)

*

V π(s) = E
a∼π(s)

-
E

s′∼T (s,a)
[r(s, a, s′) + γV π(s′)]

.

V "(s) = max
a

-
E

s′∼T (s,a)
[r(s, a, s′) + γV "(s′)]

.

These observations motivate the following definitions: the Bellman operators Bπ
q , B"

q , Bπ
v , and B"

v

are given by

Bπ
qQ(s, a) := E

s′∼T (s,a)

)
r(s, a, s′) + γ E

a′∼π(s′)
Q(s′, a′)

*

B"
qQ(s, a) := E

s′∼T (s,a)

)
r(s, a, s′) + γmax

a′
Q(s′, a′)

*

Bπ
vV (s) := E

a∼π(s)

-
E

s′∼T (s,a)
[r(s, a, s′) + γV (s′)]

.

B"
vV (s) := max

a

-
E

s′∼T (s,a)
[r(s, a, s′) + γV (s′)]

.

Note that the Bellman operators map functions to functions; specifically, Bπ
q ,B"

q : RS×A → RS×A

and Bπ
v ,B"

v : RS → RS . A key point about these operators is that (by definition) the value functions
are fixed-points, i.e.

Qπ = Bπ
qQ

π Q" = B"
qQ

" V π = Bπ
vV

π V " = B"
vV

"

Another important fact about the Bellman operators is that they are γ-contractions in the sup-norm
(also called the ∞-norm), which for a space RX is defined as

‖f‖∞ := sup
x∈X

|f(x)|

Recall that given a normed space (N, ‖ · ‖), an operator f : N → N is said to be a κ-contraction if
κ ∈ (0, 1) and

∀x, y ∈ N, ‖f(x)− f(y)‖ ≤ κ‖x− y‖

The Banach fixed-point theorem guarantees that if f is a contraction4, then f has a unique
fixed-point x∗ ∈ N satisfying

x∗ = f(x∗) = lim
k→∞

f◦k(x) ∀x ∈ N

where f◦k denotes composition of f with itself, i.e. f◦0 = id, fk+1 = f ◦ f◦k for k > 0.

4and N is a non-empty, complete metric space

5

Proposition 4. Bπ
q and B"

q are γ-contractions on RS×A. Bπ
v and B"

v are γ-contractions on RS .

Proof. Suppose Q,Q′ ∈ RS×A and V, V ′ ∈ RS .

We consider the Bπ versions first. When we write out (Bπ
qQ−Bπ

qQ
′)(s, a) = Bπ

qQ(s, a)−Bπ
qQ

′(s, a),
the expected reward cancels and, by linearity, we are left with

(Bπ
qQ− Bπ

qQ
′)(s, a) = γ E

s′∼T (s,a)

-
E

a′∼π(s′)
[(Q−Q′)(s′, a′)]

.

Then

‖Bπ
qQ− Bπ

qQ
′‖∞ = sup

s,a
|(Bπ

qQ− Bπ
qQ

′)(s, a)|

= γ sup
s,a

$$$$ E
s′,a′

[(Q−Q′)(s′, a′)]

$$$$

≤ γ sup
s,a

E
s′,a′

|(Q−Q′)(s′, a′)|

≤ γ sup
s′,a′

|(Q−Q′)(s′, a′)|
/ 01 2

‖Q−Q′‖∞

as claimed. Similarly,

(Bπ
vV − Bπ

vV
′)(s) = γ E

a∼π(s)

-
E

s′∼T (s,a)
[(V − V ′)(s′)]

.

so
‖Bπ

vV − Bπ
vV

′‖∞ ≤ γ sup
s

E
a,s′

|(V − V ′)(s′)| ≤ γ sup
s′

|(V − V ′)(s′)|
/ 01 2

‖V−V ′‖∞

The B" versions are slightly more involved because the max makes things nonlinear. We use the
following lemma:

|max
x

f(x)−max
x

g(x)| ≤ max
x

|f(x)− g(x)|

To see this, suppose maxx f(x) > maxx g(x) (the other case is symmetric) and let x̃ = argmaxx f(x).
Then

|max
x

f(x)−max
x

g(x)| = f(x̃)−max
x

g(x) ≤ f(x̃)− g(x̃) ≤ max
x

|f(x)− g(x)|

With this established, we see that

‖B"
qQ− B"

qQ
′‖∞ = sup

s,a
|(B"

qQ− B"
qQ

′)(s, a)|

= γ sup
s,a

$$$$$Es′

)
max
a′

Q(s′, a′)−max
a′′

Q′(s′, a′′)

*$$$$$

≤ γ sup
s,a

E
s′

$$$$max
a′

Q(s′, a′)−max
a′′

Q′(s′, a′′)

$$$$

≤ γ sup
s,a

E
s′
max
a′

|Q(s′, a′)−Q′(s′, a′)| (lemma)

≤ γ sup
s′,a′

|(Q−Q′)(s′, a′)|
/ 01 2

‖Q−Q′‖∞

6

Finally,

‖B"
vV − B"

vV
′‖∞ = sup

s
|B"

vV (s)− B"
vV

′(s)|

= sup
s

$$$$max
a

Es′ [r(s, a, s
′) + γV (s′)]−max

a
Es′ [r(s, a, s

′) + γV ′(s′)]

$$$$

≤ sup
s

max
a

$$$
3
Es′ [r(s, a, s

′) + γV (s′)]
4
−
3
Es′ [r(s, a, s

′) + γV ′(s′)]
4$$$ (lemma)

= γ sup
s

max
a

$$Es′ [(V − V ′)(s′)]
$$

≤ γ sup
s

max
a

Es′ |(V − V ′)(s′)|

≤ γ sup
s′

|(V − V ′)(s′)|
/ 01 2

‖V−V ′‖∞

as was to be shown.

As a consequence, the value functions can be obtained by iterating their corresponding Bellman
equations: for any Q ∈ RS×A,

lim
k→∞

(Bπ
q)

◦kQ = Qπ lim
k→∞

(B"
q)

◦kQ = Q"

and for any V ∈ RS ,

lim
k→∞

(Bπ
v)

◦kV = V π lim
k→∞

(B"
v)

◦kV = V "

7

Algorithm 1 Q-Value Iteration

1: Initialize Q0 arbitrarily, e.g. Q0 = 0
2: for all k = 0, 1, 2, . . . do
3: for all s ∈ S, a ∈ A do
4: Qk+1(s, a) =

!
s′ T (s′ | s, a)

"
r(s, a, s′) + γ maxa′ Qk(s

′, a′)
#

5: end for
6: end for

Algorithm 2 Value Iteration

1: Initialize V0 arbitrarily, e.g. V0 = 0
2: for all k = 0, 1, 2, . . . do
3: for all s ∈ S do
4: Vk+1(s) = maxa

!
s′ T (s′ | s, a)

"
r(s, a, s′) + γVk(s

′)
#

5: end for
6: end for

4 Dynamic programming for solving tabular MDPs

Now we discuss fundamental algorithms for solving tabular MDPs when the reward function and
transition probabilities are known. In this setting, the Bellman operators can be computed exactly.

4.1 (Q-)Value iteration

Q-value iteration (Algorithm 1) is the algorithm defined by iteratively applying B"
q :

Qk+1 = B"
qQk

where Q0 is an arbitrary initialization. As previously mentioned, we have limk→∞ Qk = Q". Then
an optimal policy can be derived from Q".

Value iteration (Algorithm 2) is the algorithm obtained by iteratively applying B"
v :

Vk+1 = B"
vVk

where V0 is an arbitrary initialization. As previously mentioned, we have limk→∞ Vk = V ". Then
an optimal policy can be derived by

πQ!(s) = argmax
a

Q"(s, a) = argmax
a

!

s′

T (s′ | s, a)
3
r(s, a, s′) + γV "(s′)

4

For both algorithms, the computational complexity of each iteration is O(|S|2|A|).
However, we cannot not run k → ∞ in practice, so it is of interest to understand the performance
of the greedy policy with respect to an imperfect value function.

Proposition 5. For any Q ∈ RS×A,

V πQ ≥ V " − 2‖Q−Q"‖∞
1− γ

For proof, see [1].

Corollary 1 (Convergence of Q-value iteration). Suppose the rewards are bounded such that |r| ≤
rmax, and let ε > 0. Then if we initialize Q0 = 0, then for k ≥ 1

1−γ log 2rmax

ε(1−γ)2 ,
5 the greedy policy

πk := πQk
satisfies

V πk ≥ V " − ε
5Note that the bound is slightly more general than in [1] because they assume rmax = 1. Also our version has an

extra 1− γ factor in the denominator inside the log because we do not normalize the value functions.

8

Algorithm 3 Policy Iteration

1: Initialize π0 arbitrarily
2: for all k = 0, 1, 2, . . . do
3: Compute Qπk

4: for all s do
5: πk+1(s) = argmaxa Qπk (s, a)
6: end for
7: end for

Proof. First note that since the rewards are bounded by rmax,

‖Q"‖∞ ≤
∞!

t=0

γt|rt| ≤
rmax

1− γ

Applying the contraction property and the fact that Q" = B"
qQ

", we obtain

‖Qk −Q"‖∞ = ‖(B"
q)

◦kQ0 − (B"
q)

◦kQ"‖∞ ≤ γk‖Q0 −Q"‖∞ = γk‖Q"‖∞ ≤ γkrmax

1− γ

Since 1− x ≤ e−x for any x, we have

γk = (1− (1− γ))k ≤ (e−(1−γ))k ≤ e−(1−γ)k

Combining this with the previous bound yields

V πQk ≥ V " − 2
‖Qk −Q"‖∞

1− γ
≥ V " − 2rmax

(1− γ)2
e−(1−γ)k

Thus it suffices to have
2rmax

(1− γ)2
e−(1−γ)k ≤ ε

Solving for k gives the stated result.

A similar bound can be obtained for value iteration.

4.2 Policy iteration

The previously discussed algorithms aim to approximate the optimal value functions directly. Policy
iteration (Algorithm 3) is a different approach based on two alternating steps:

1. Policy evaluation: compute Qπk , the value of the current policy πk

2. Policy improvement: update the policy as πk+1 = πQπk , the greedy policy with respect to
the Q function of the previous policy

4.2.1 Policy evaluation

The policy evaluation step can be done in more than one way. As previously mentioned, Qπ is the
unique fixed-point of Bπ

q , so one can approximate Qπ by iterating Bπ
q , analogous to Q-value iteration.

Alternatively, we can find Qπ exactly by solving a linear system. In a tabular MDP, one can view
Qπ as a vector qπ ∈ R|S||A|. Define a vector r ∈ R|S||A| whose (s, a)th element is Es′r(s, a, s

′), and
a matrix Tπ with entries

Tπ
(s,a),(s′,a′) =

5
T (s′ | s, a) if a′ = π(s′)

0 otherwise

9

Then we have
qπ = r+ γTπqπ

so
qπ = (I− γTπ)−1r

We are guaranteed that this matrix is invertible because for any x ∕= 0,

‖(I− γTπ)x‖∞ = ‖x− γTπx‖∞
≥ ‖x‖∞ − γ‖Tπx‖∞
≥ ‖x‖∞ − γ‖x‖∞
> 0

which implies (I− γTπ)x ∕= 0.

Yet another way is to compute V π (using Bπ
v or an analogous linear system) and then derive Qπ

from that.

4.2.2 Policy improvement

The name “policy improvement” is justified by the following facts.

Proposition 6 (Policy improvement). For all k,

1. The value function is non-decreasing: V πk+1 ≥ V πk

2. The Q-function is non-decreasing: Qπk+1 ≥ B"
qQ

πk ≥ Qπk

3. The Q-function makes progress towards Q": ‖Qπk+1 −Q"‖∞ ≤ γ‖Qπk −Q"‖∞

4. If πk+1 = πk for some k, then πk is optimal.

Proof. We begin with the first claim. For any state s:

V πk(s) = Qπk(s,πk(s))

≤ max
a

Qπk(s, a)

= Qπk(s,πk+1(s))

= E
s′∼T (s,πk+1(s))

[r(s,πk+1(s), s
′) + γV πk(s′)]

≤ E
s′∼T (s,πk+1(s))

-
r(s,πk+1(s), s

′) + γ E
s′′∼T (s′,πk+1(s′))

[r(s′,πk+1(s
′), s′′) + γV πk(s′′)]

.

... (repeat this process until every action is sampled from πk+1)

≤ V πk+1(s)

Having established the first claim, the second claim follows readily:

Qπk+1(s, a) = E
s′∼T (s,a)

+
r(s, a, s′) + V πk+1(s′))

,

≥ E
s′∼T (s,a)

)
r(s, a, s′) + max

a′
Qπk(s′, a′)

*
= B"

qQ
πk(s, a)

≥ E
s′∼T (s,a)

+
r(s, a, s′) +Qπk(s′,πk(s

′))
,

= Qπk(s, a)

10

For the third claim,

‖Qπk+1 −Q"‖∞ ≤ ‖B"
qQ

πk −Q"‖∞ (B"
qQ

πk ≤ Qπk+1 ≤ Q")

= ‖B"
qQ

πk − B"
qQ

"‖∞ (Q" = B"
qQ

")

≤ γ‖Qπk −Q"‖∞ (B"
q is γ-contraction)

For the final claim, observe that if πk+1 = πk, then Qπk+1 = Qπk , so we must have B"
qQ

πk = Qπk ,
which implies Qπk = Q".

Since there are only |A||S| distinct deterministic policies, policy iteration will converge in at most
this many iterations.

References

[1] Alekh Agarwal, Nan Jiang, Sham M. Kakade. Reinforcement Learning: Theory and Algorithms.

11

