Vector Spaces and Linear Maps

Garrett Thomas

August 14, 2018

1 About

This document is part of a series of notes about math and machine learning. You are free to distribute it as you wish. The latest version can be found at http://gwthomas.github.io/notes. Please report any errors to gwthomas@stanford.edu.

2 Vector spaces

Vector spaces are the basic setting in which linear algebra happens. A vector space over a field \mathbb{F} consists of a set V (the elements of which are called vectors) along with an addition operation $+: V \times V \rightarrow V$ and a scalar multiplication operation $\mathbb{F} \times V \rightarrow V$ satisfying
(i) There exists an additive identity, denoted 0 , in V such that $v+0=v$ for all $v \in V$
(ii) For each $v \in V$, there exists an additive inverse, denoted $-v$, such that $v+(-v)=0$
(iii) There exists a multiplicative identity, denoted 1 , in \mathbb{F} such that $1 v=v$ for all $v \in V$
(iv) Commutativity: $u+v=v+u$ for all $u, v \in V$
(v) Associativity: $(u+v)+w=u+(v+w)$ and $\alpha(\beta v)=(\alpha \beta) v$ for all $u, v, w \in V$ and $\alpha, \beta \in \mathbb{F}$
(vi) Distributivity: $\alpha(u+v)=\alpha u+\alpha v$ and $(\alpha+\beta) v=\alpha v+\beta v$ for all $u, v \in V$ and $\alpha, \beta \in \mathbb{F}$

We will assume $\mathbb{F}=\mathbb{R}$ or $\mathbb{F}=\mathbb{C}$ as these are the most common cases by far, although in general it could be any field.

To justify the notations 0 for the additive identity and $-v$ for the additive inverse of v we must demonstrate their uniqueness.

Proof. If $w, \tilde{w} \in V$ satisfy $v+w=v$ and $v+\tilde{w}=v$ for all $v \in V$, then

$$
w=w+\tilde{w}=\tilde{w}+w=\tilde{w}
$$

This proves the uniqueness of the additive identity. Similarly, if $w, \tilde{w} \in V$ satisfy $v+w=0$ and $v+\tilde{w}=0$, then

$$
w=w+0=w+v+\tilde{w}=0+\tilde{w}=\tilde{w}
$$

thus showing the uniqueness of the additive inverse.

We have $0 v=0$ for every $v \in V$ and $\alpha 0=0$ for every $\alpha \in \mathbb{F}$.
Proof. If $v \in V$, then

$$
v=1 v=(1+0) v=1 v+0 v=v+0 v
$$

which implies $0 v=0$. If $\alpha \in \mathbb{F}$, then

$$
\alpha v=\alpha(v+0)=\alpha v+\alpha 0
$$

which implies $\alpha 0=0$.
Moreover, $(-1) v=-v$ for every $v \in V$, since

$$
v+(-1) v=(1+(-1)) v=0 v=0
$$

and we have shown that additive inverses are unique.

2.1 Subspaces

Vector spaces can contain other vector spaces. If V is a vector space, then $S \subseteq V$ is said to be a subspace of V if
(i) $0 \in S$
(ii) S is closed under addition: $u, v \in S$ implies $u+v \in S$
(iii) S is closed under scalar multiplication: $v \in S, \alpha \in \mathbb{F}$ implies $\alpha v \in S$

Note that V is always a subspace of V, as is the trivial vector space which contains only 0 .
Proposition 1. Suppose U and W are subspaces of some vector space. Then $U \cap W$ is a subspace of U and a subspace of W.

Proof. We only show that $U \cap W$ is a subspace of U; the same result follows for W since $U \cap W=$ $W \cap U$.
(i) Since $0 \in U$ and $0 \in W$ by virtue of their being subspaces, we have $0 \in U \cap W$.
(ii) If $x, y \in U \cap W$, then $x, y \in U$ so $x+y \in U$, and $x, y \in W$ so $x+y \in W$; hence $x+y \in U \cap W$.
(iii) If $v \in U \cap W$ and $\alpha \in \mathbb{F}$, then $v \in U$ so $\alpha v \in U$, and $v \in W$ so $\alpha v \in W$; hence $\alpha v \in U \cap W$.

Thus $U \cap W$ is a subspace of U.

2.1.1 Sums of subspaces

If U and W are subspaces of V, then their sum is defined as

$$
U+W \triangleq\{u+w: u \in U, w \in W\}
$$

Proposition 2. Let U and W be subspaces of V. Then $U+W$ is a subspace of V.
Proof. (i) Since $0 \in U$ and $0 \in V, 0=0+0 \in U+W$.
(ii) If $v_{1}, v_{2} \in U+W$, then there exist $u_{1}, u_{2} \in U$ and $w_{1}, w_{2} \in W$ such that $v_{1}=u_{1}+w_{1}$ and $v_{2}=u_{2}+w_{2}$, so by the closure of U and W under addition we have

$$
v_{1}+v_{2}=u_{1}+w_{1}+u_{2}+w_{2}=\underbrace{u_{1}+u_{2}}_{\in U}+\underbrace{w_{1}+w_{2}}_{\in W} \in U+W
$$

(iii) If $v \in U+W, \alpha \in F$, then there exists $u \in U$ and $w \in W$ such that $v=u+w$, so by the closure of U and W under scalar multiplication we have

$$
\alpha v=\alpha(u+w)=\underbrace{\alpha u}_{\in U}+\underbrace{\alpha w}_{\in W} \in U+W
$$

Thus $U+W$ is a subspace of V.
If $U \cap W=\{0\}$, the sum is said to be a direct sum and written $U \oplus W$.
Proposition 3. Suppose U and W are subspaces of some vector space. The following are equivalent:
(i) The sum $U+W$ is direct, i.e. $U \cap W=\{0\}$.
(ii) The only way to write 0 as a sum $u+w$ where $u \in U, w \in W$ is to take $u=w=0$.
(iii) Every vector in $U+W$ can be written uniquely as $u+w$ for some $u \in U$ and $w \in W$.

Proof. (i) \Longrightarrow (ii): Assume (i), and suppose $0=u+w$ where $u \in U, w \in W$. Then $u=-w$, so $u \in W$ as well, and thus $u \in U \cap W$. By assumption this implies $u=0$, so $w=0$ also.
(ii) \Longrightarrow (iii): Assume (ii), and suppose $v \in U+W$ can be written both as $v=u+w$ and $v=\tilde{u}+\tilde{w}$ where $u, \tilde{u} \in U$ and $w, \tilde{w} \in W$. Then

$$
0=v-v=u+w-(\tilde{u}+\tilde{w})=\underbrace{u-\tilde{u}}_{\in U}+\underbrace{w-\tilde{w}}_{\in W}
$$

so by assumption we must have $u-\tilde{u}=w-\tilde{w}=0$, i.e. $u=\tilde{u}$ and $w=\tilde{w}$.
(iii) \Longrightarrow (i): Assume (iii), and suppose $v \in U \cap W$, so that $v \in U$ and $v \in W$, nothing that $-v \in W$ also. Now $0=v+(-v)$ and $0=0+0$ both write 0 in the form $u+w$ where $u \in U, w \in W$, so by the assumed uniqueness of this decomposition we conclude that $v=0$. Thus $U \cap W \subseteq\{0\}$. It is also clear that $\{0\} \subseteq U \cap W$ since U and W are both subspaces, so $U \cap W=\{0\}$.

2.2 Span

A linear combination of vectors $v_{1}, \ldots, v_{n} \in V$ is an expression of the form

$$
\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}
$$

where $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}$. The span of a set of vectors is the set of all possible linear combinations of these:

$$
\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\} \triangleq\left\{\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}: \alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}\right\}
$$

We also define the special case $\operatorname{span}\}=\{0\}$. Spans of sets of vectors form subspaces.
Proposition 4. If $v_{1}, \ldots, v_{n} \in V$, then $\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$ is a subspace of V.

Proof. Let $S=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$. If $n=0$, we have $S=\operatorname{span}\{ \}=\{0\}$, which is a subspace of V, so assume hereafter that $n>0$.
(i) Since $\left\{v_{1}, \ldots, v_{n}\right\}$ is non-empty (as $n \geq 1$), we have $0=0 v_{1}+\cdots+0 v_{n} \in S$.
(ii) If $x, y \in S$, we can write $x=\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}$ and $y=\beta_{1} v_{1}+\cdots+\beta_{n} v_{n}$ for some $\alpha_{1}, \ldots, \alpha_{n}, \beta_{1}, \ldots, \beta_{n} \in \mathbb{F}$. Then

$$
x+y=\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}+\beta_{1} v_{1}+\cdots+\beta_{n} v_{n}=\left(\alpha_{1}+\beta_{1}\right) v_{1}+\cdots+\left(\alpha_{n}+\beta_{n}\right) v_{n} \in S
$$

(iii) If $x \in S, \beta \in \mathbb{F}$, we can write $x=\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}$ for some $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}$. Then

$$
\beta x=\beta\left(\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}\right)=\left(\beta \alpha_{1}\right) v_{1}+\cdots+\left(\beta \alpha_{n}\right) v_{n} \in S
$$

Thus S is a subspace of V.

Adding a vector which lies in the span of a set of vectors to that set does not expand the span in any way.

Proposition 5. If $w \in \operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$, then $\operatorname{span}\left\{v_{1}, \ldots, v_{n}, w\right\}=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$.
Proof. Suppose $w \in \operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$. It is clear that $\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\} \subseteq \operatorname{span}\left\{v_{1}, \ldots, v_{n}, w\right\}$: if $u \in \operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$ then it can be written $u=\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}$, but then $u=\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}+0 w$, so $u \in \operatorname{span}\left\{v_{1}, \ldots, v_{n}, w\right\}$.
To prove the other direction, write $w=\beta_{1} v_{1}+\cdots+\beta_{n} v_{n}$. Then for any $u \in \operatorname{span}\left\{v_{1}, \ldots, v_{m}, w\right\}$, there exist $\alpha_{1}, \ldots, \alpha_{n}, \alpha_{n+1}$ such that $u=\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}+\alpha_{n+1} w$, and

$$
\begin{aligned}
u & =\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}+\alpha_{n+1}\left(\beta_{1} v_{1}+\cdots+\beta_{n} v_{n}\right) \\
& =\left(\alpha_{1}+\alpha_{n+1} \beta_{1}\right) v_{1}+\cdots+\left(\alpha_{n}+\alpha_{n+1} \beta_{n}\right) v_{n}
\end{aligned}
$$

so $u \in \operatorname{span}\left\{v_{1}, \ldots, v_{m}\right\}$. Hence $\operatorname{span}\left\{v_{1}, \ldots, v_{n}, w\right\} \subseteq \operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$ and the claim follows.

2.3 Linear independence

A set of vectors $v_{1}, \ldots, v_{n} \in V$ is said to be linearly independent if

$$
\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}=0 \quad \text { implies } \quad \alpha_{1}=\cdots=\alpha_{n}=0
$$

Otherwise, there exist $\alpha_{1}, \ldots, \alpha_{n} \in \mathbb{F}$, not all zero, such that $\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}=0$, and v_{1}, \ldots, v_{n} are said to be linearly dependent. Note that in the case of linear dependence, (at least) one vector can be written as a linear combination of the other vectors in the set: if $\alpha_{j} \neq 0$, then

$$
v_{j}=-\frac{1}{\alpha_{j}} \sum_{k \neq j}^{n} \alpha_{k} v_{k}
$$

This implies that $v_{j} \in \operatorname{span}\left\{v_{1}, \ldots, v_{j-1}, v_{j+1}, \ldots, v_{n}\right\}$.

2.4 Basis

If a set of vectors is linearly independent and its span is the whole of V, those vectors are said to be a basis for V. One of the most important properties of bases is that they provide unique representations for every vector in the space they span.

Proposition 6. A set of vectors $v_{1}, \ldots, v_{n} \in V$ is a basis for V if and only if every vector in V can be written uniquely as a linear combination of v_{1}, \ldots, v_{n}.

Proof. Suppose v_{1}, \ldots, v_{n} is a basis for V. Then these span V, so if $w \in V$ then there exist $\alpha_{1}, \ldots, \alpha_{n}$ such that $w=\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}$. Furthermore, if $w=\tilde{\alpha}_{1} v_{1}+\cdots+\tilde{\alpha}_{n} v_{n}$ also, then

$$
\begin{aligned}
0 & =w-w \\
& =\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}-\left(\tilde{\alpha}_{1} v_{1}+\cdots+\tilde{\alpha}_{n} v_{n}\right) \\
& =\left(\alpha_{1}-\tilde{\alpha}_{1}\right) v_{n}+\cdots+\left(\alpha_{n}-\tilde{\alpha}_{n}\right) v_{n}
\end{aligned}
$$

Since v_{1}, \ldots, v_{n} are linearly independent, this implies $\alpha_{j}-\tilde{\alpha}_{j}=0$, i.e. $\alpha_{j}=\tilde{\alpha}_{j}$, for all $j=1, \ldots, n$.
Conversely, suppose that every vector in V can be written uniquely as a linear combination of v_{1}, \ldots, v_{n}. The existence part of this assumption clearly implies that v_{1}, \ldots, v_{n} span V. To show that v_{1}, \ldots, v_{n} are linearly independent, suppose

$$
\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}=0
$$

and observe that since

$$
0 v_{1}+\cdots+0 v_{n}=0
$$

the uniqueness of the representation of 0 as a linear combination of v_{1}, \ldots, v_{n} implies that $\alpha_{1}=$ $\cdots=\alpha_{n}=0$.

If a vector space is spanned by a finite number of vectors, it is said to be finite-dimensional. Otherwise it is infinite-dimensional. The number of vectors in a basis for a finite-dimensional vector space V is called the dimension of V and denoted $\operatorname{dim} V$.

Proposition 7. If $v_{1}, \ldots, v_{n} \in V$ are not all zero, then there exists a subset of $\left\{v_{1}, \ldots, v_{n}\right\}$ which is linearly independent and whose span equals $\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$.

Proof. If v_{1}, \ldots, v_{n} are linearly independent, then we are done. Otherwise, pick v_{j} which is in $\operatorname{span}\left\{v_{1}, \ldots, v_{j-1}, v_{j+1}, \ldots, v_{n}\right\}$. Since $\operatorname{span}\left\{v_{1}, \ldots, v_{j-1}, v_{j+1}, \ldots, v_{n}\right\}=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$, we can drop v_{j} from this list without changing the span. Repeat this process until the resulting set is linearly independent.

As a corollary, we can establish an important fact: every finite-dimensional vector space has a basis.
Proof. Let V be a finite-dimensional vector space. By definition, this means that there exist v_{1}, \ldots, v_{n} such that $V=\operatorname{span}\left\{v_{1}, \ldots, v_{n}\right\}$. By the previous result, there exists a linearly independent subset of $\left\{v_{1}, \ldots, v_{n}\right\}$ whose span is V; this subset is a basis for V.

Proposition 8. A linearly independent set of vectors in V can be extended to a basis for V.
Proof. Suppose $v_{1}, \ldots, v_{n} \in V$ are linearly independent. Let w_{1}, \ldots, w_{m} be a basis for V. Then $v_{1}, \ldots, v_{n}, w_{1}, \ldots, w_{m}$ spans V, so there exists a subset of this set which is linearly independent and also spans V. Moreover, by inspecting the process by which this linearly independent subset
is produced, we see that none of v_{1}, \ldots, v_{n} need be dropped because they are linearly independent. Hence the resulting linearly independent set, which is basis for V, can be chosen to contain v_{1}, \ldots, v_{n}.

The dimensions of sums of subspaces obey a friendly relationship:
Proposition 9. If U and W are subspaces of some vector space, then

$$
\operatorname{dim}(U+W)=\operatorname{dim} U+\operatorname{dim} W-\operatorname{dim}(U \cap W)
$$

Proof. Let v_{1}, \ldots, v_{k} be a basis for $U \cap W$, and extend this to bases $v_{1}, \ldots, v_{k}, u_{1}, \ldots, u_{m}$ for U and $v_{1}, \ldots, v_{k}, w_{1}, \ldots, w_{n}$ for W. We claim that $v_{1}, \ldots, v_{k}, u_{1}, \ldots, u_{m}, w_{1}, \ldots, w_{n}$ is a basis for $U+W$.
If $v \in U+W$, then $v=u+w$ for some $u \in U, w \in W$. Then since $u=\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}+$ $\alpha_{k+1} u_{1} \cdots+\alpha_{k+m} u_{m}$ for some $\alpha_{1}, \ldots, \alpha_{k+m} \in \mathbb{F}$ and $w=\beta_{1} v_{1}+\cdots+\beta_{k} v_{k}+\beta_{k+1} w_{1} \cdots+\beta_{k+n} w_{n}$ for some $\beta_{1}, \ldots, \beta_{k+n} \in \mathbb{F}$, we have

$$
\begin{aligned}
v & =u+w \\
& =\alpha_{1} v_{1}+\cdots+\alpha_{k} v_{k}+\alpha_{k+1} u_{1} \cdots+\alpha_{k+m} u_{m}+\beta_{1} v_{1}+\cdots+\beta_{k} v_{k}+\beta_{k+1} w_{1} \cdots+\beta_{k+n} w_{n} \\
& =\left(\alpha_{1}+\beta_{1}\right) v_{1}+\cdots+\left(\alpha_{k}+\beta_{k}\right) v_{k}+\alpha_{k+1} u_{1} \cdots+\alpha_{k+m} u_{m}+\beta_{k+1} w_{1} \cdots+\beta_{k+n} w_{n}
\end{aligned}
$$

so $v \in \operatorname{span}\left\{v_{1}, \ldots, v_{k}, u_{1}, \ldots, u_{m}, w_{1}, \ldots, w_{n}\right\}$. Moreover, the uniqueness of the expansion of v in this set follows from the uniqueness of the expansions of u and w.
Thus $v_{1}, \ldots, v_{k}, u_{1}, \ldots, u_{m}, w_{1}, \ldots, w_{n}$ is a basis for $U+W$ as claimed, so

$$
\operatorname{dim} U+\operatorname{dim} W-\operatorname{dim}(U \cap W)=(k+m)+(k+n)-k=k+m+n=\operatorname{dim}(U+W)
$$

as we set out to show.

It follows immediately that

$$
\operatorname{dim}(U \oplus W)=\operatorname{dim} U+\operatorname{dim} W
$$

since $\operatorname{dim}(U \cap W)=\operatorname{dim}\{0\}=0$ if the sum is direct.

3 Linear maps

A linear map is a function $T: V \rightarrow W$, where V and W are vector spaces over \mathbb{F}, that satisfies
(i) $T(u+v)=T(u)+T(v)$ for all $u, v \in V$
(ii) $T(\alpha v)=\alpha T(v)$ for all $v \in V, \alpha \in \mathbb{F}$

The standard notational convention for linear maps (which we will follow hereafter) is to drop unnecessary parentheses, writing $T v$ rather than $T(v)$ if there is no risk of ambiguity, and denote composition of linear maps by $S T$ rather than the usual $S \circ T$.
The identity map on V, which sends each $v \in V$ to v, is denoted I_{V}, or just I if the vector space V is clear from context. Note that all linear maps (not just the identity) send zero to zero.

Proof. For any $v \in V$ we have

$$
T v=T\left(v+0_{V}\right)=T v+T 0_{V}
$$

so by subtracting $T v$ from both sides we obtain $T 0_{V}=0_{W}$.

One useful fact regarding linear maps (both conceptually and for proofs) is that they are uniquely determined by their action on a basis.
Proposition 10. Let v_{1}, \ldots, v_{n} be a basis for a vector space V, and w_{1}, \ldots, w_{n} be arbitrary vectors in a vector space W. Then there exists a unique linear map $T: V \rightarrow W$ such that

$$
T v_{j}=w_{j}
$$

for all $j=1, \ldots, n$.
Proof. Define

$$
\begin{aligned}
T: V & \rightarrow W \\
\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n} & \mapsto \alpha_{1} w_{1}+\cdots+\alpha_{n} w_{n}
\end{aligned}
$$

This function is well-defined because every vector in V can be expressed uniquely as a linear combination of v_{1}, \ldots, v_{n}. Then for any $x=\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}$ and $y=\beta_{1} v_{1}+\cdots+\beta_{n} v_{n}$ in V,

$$
\begin{aligned}
T(x+y) & =T\left(\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}+\beta_{1} v_{1}+\cdots+\beta_{n} v_{n}\right) \\
& =T\left(\left(\alpha_{1}+\beta_{1}\right) v_{1}+\cdots+\left(\alpha_{n}+\beta_{n}\right) v_{n}\right) \\
& =\left(\alpha_{1}+\beta_{1}\right) w_{1}+\cdots+\left(\alpha_{n}+\beta_{n}\right) w_{n} \\
& =\alpha_{1} w_{1}+\cdots+\alpha_{n} w_{n}+\beta_{1} w_{1}+\cdots+\beta_{n} w_{n} \\
& =T x+T y
\end{aligned}
$$

and if $\gamma \in \mathbb{F}$ then

$$
\begin{aligned}
T(\gamma x) & =T\left(\gamma\left(\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}\right)\right) \\
& =T\left(\left(\gamma \alpha_{1}\right) v_{1}+\cdots+\left(\gamma \alpha_{n}\right) v_{n}\right) \\
& =\left(\gamma \alpha_{1}\right) w_{1}+\cdots+\left(\gamma \alpha_{n}\right) w_{n} \\
& =\gamma\left(\alpha_{1} w_{1}+\cdots+\alpha_{n} w_{n}\right) \\
& =\gamma T x
\end{aligned}
$$

so T is a linear map. Now observe that, by construction,

$$
\begin{aligned}
T v_{j} & =T\left(0 v_{1}+\cdots+0 v_{j-1}+1 v_{j}+0 v_{j+1}+\cdots+0 v_{n}\right) \\
& =0 w_{1}+\cdots+0 w_{j-1}+1 w_{j}+0 w_{j+1}+\cdots+0 w_{n} \\
& =w_{j}
\end{aligned}
$$

as desired. Towards uniqueness, suppose \tilde{T} is a linear map which satisfies $\tilde{T} v_{j}=w_{j}$ for $j=1, \ldots, n$. Any $v \in V$ can be written uniquely as $v=\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}$, and

$$
\tilde{T}\left(\alpha_{1} v_{1}+\cdots+\alpha_{n} v_{n}\right)=\alpha_{1} \tilde{T} v_{1}+\cdots+\alpha_{n} \tilde{T} v_{n}=\alpha_{1} w_{1}+\cdots+\alpha_{n} w_{n}
$$

by the linearity of \tilde{T}. Hence $\tilde{T}=T$.

3.1 Isomorphisms

Observe that the definition of a linear map is suited to reflect the structure of vector spaces, since it preserves vector spaces' two main operations, addition and scalar multiplication. In algebraic terms, a linear map is said to be a homomorphism of vector spaces. An invertible homomorphism where the inverse is also a homomorphism is called an isomorphism. If there exists an isomorphism from V to W, then V and W are said to be isomorphic, and we write $V \cong W$. Isomorphic vector spaces are essentially "the same" in terms of their algebraic structure. It is an interesting fact that finite-dimensional vector spaces of the same dimension over the same field are always isomorphic.

Proof. Let V and W be finite-dimensional vector spaces over \mathbb{F}, with $n \triangleq \operatorname{dim} V=\operatorname{dim} W$. We will show that $V \cong W$ by exhibiting an isomorphism from V to W. To this end, let v_{1}, \ldots, v_{n} and w_{1}, \ldots, w_{n} be bases for V and W, respectively. Then there exist (unique) linear maps $T: V \rightarrow W$ and $S: W \rightarrow V$ satisfying $T v_{j}=w_{j}$ and $S w_{j}=v_{j}$ for all $j=1, \ldots, n$. Now clearly $S T v_{j}=S w_{j}=v_{j}$ for each j, so $S T=I_{V}$. Similarly, $T S w_{j}=T v_{j}=w_{j}$ for each j, so $T S=I_{W}$. Hence $S=T^{-1}$, so T is an isomorphism, and hence $V \cong W$.

3.2 Algebra of linear maps

Linear maps can be added and scaled to produce new linear maps. That is, if S and T are linear maps from V into W, and $\alpha \in \mathbb{F}$, it is straightforward to verify that $S+T$ and αT are linear maps from V into W. Since addition and scaling of functions satisfy the usual commutativity/associativity/distributivity rules, the set of linear maps from V into W is also a vector space over \mathbb{F}; we denote this space by $L(V, W)$. The additive identity here is the zero map which sends every $v \in V$ to 0_{W}.
The composition of linear maps is also a linear map.
Proposition 11. Let U, V, and W be vector spaces over a common field \mathbb{F}, and suppose $S: V \rightarrow W$ and $T: U \rightarrow V$ are linear maps. Then the composition $S T: U \rightarrow W$ is also a linear map.

Proof. For any $u, v \in U$,

$$
(S T)(u+v)=S(T(u+v))=S(T u+T v)=S T u+S T v
$$

and furthermore if $\alpha \in \mathbb{F}$ then

$$
(S T)(\alpha v)=S(T(\alpha v))=S(\alpha T v)=\alpha S T v
$$

so $S T$ is linear.
The identity map is a "multiplicative" identity here, as $T I_{V}=I_{W} T=T$ for any $T: V \rightarrow W$.

3.3 Nullspace

If $T: V \rightarrow W$ is a linear map, the nullspace ${ }^{1}$ of T is the set of all vectors in V that get mapped to zero:

$$
\operatorname{null}(T) \triangleq\left\{v \in V: T v=0_{W}\right\}
$$

Proposition 12. If $T: V \rightarrow W$ is a linear map, then $\operatorname{null}(T)$ is a subspace of V.
Proof. (i) We have already seen that $T\left(0_{V}\right)=0_{W}$, so $0_{V} \in \operatorname{null}(T)$.
(ii) If $u, v \in \operatorname{null}(T)$, then

$$
T(u+v)=T u+T v=0_{W}+0_{W}=0_{W}
$$

so $u+v \in \operatorname{null}(T)$.

[^0](iii) If $v \in \operatorname{null}(T), \alpha \in \mathbb{F}$, then
$$
T(\alpha v)=\alpha T v=\alpha 0_{W}=0_{W}
$$
so $\alpha v \in \operatorname{null}(T)$.
Thus $\operatorname{null}(T)$ is a subspace of V.
Proposition 13. A linear map $T: V \rightarrow W$ is injective if and only if $\operatorname{null}(T)=\left\{0_{V}\right\}$.
Proof. Assume T is injective. We have seen that $T 0_{V}=0_{W}$, so $0_{V} \in \operatorname{null}(T)$, and moreover if $T v=0_{W}$ the injectivity of T implies $v=0_{V}$, so null $(T)=\left\{0_{V}\right\}$.
Conversely, assume $\operatorname{null}(T)=\left\{0_{V}\right\}$, and suppose $T u=T v$ for some $u, v \in V$. Then
$$
0=T u-T v=T(u-v)
$$
so $u-v \in \operatorname{null}(T)$, which by assumption implies $u-v=0$, i.e. $u=v$. Hence T is injective.

3.4 Range

The range of T is (as for any function) the set of all possible outputs of T :

$$
\operatorname{range}(T) \triangleq\{T v: v \in V\}
$$

Proposition 14. If $T: V \rightarrow W$ is a linear map, then range (T) is a subspace of W.
Proof. (i) We have already seen that $T\left(0_{V}\right)=0_{W}$, so $0_{W} \in \operatorname{range}(T)$.
(ii) If $w, z \in \operatorname{range}(T)$, there exist $u, v \in V$ such that $w=T u$ and $z=T v$. Then

$$
T(u+v)=T u+T v=w+z
$$

so $w+z \in \operatorname{range}(T)$.
(iii) If $w \in \operatorname{range}(T), \alpha \in \mathbb{F}$, there exists $v \in V$ such that $w=T v$. Then

$$
T(\alpha v)=\alpha T v=\alpha w
$$

so $\alpha w \in \operatorname{range}(T)$.
Thus range (T) is a subspace of W.

4 Eigenvalues and eigenvectors

In the special case where the domain and codomain of a linear map are the same, certain vectors may have the special property that the map simply scales them. If $T: V \rightarrow V$ is a linear map and $v \in V$ is nonzero, then v is said to be an eigenvector of T with corresponding eigenvalue $\lambda \in \mathbb{F}$ if

$$
T v=\lambda v
$$

or equivalently, if

$$
v \in \operatorname{null}(T-\lambda I)
$$

This second definition makes it clear that the set of eigenvectors corresponding to a given eigenvalue (along with 0) is a vector space. This vector space is called the eigenspace of T associated with λ.

[^0]: ${ }^{1}$ It is sometimes called the kernel by algebraists, but we eschew this terminology because the word "kernel" has another meaning in machine learning.

