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Abstract

Tensor factorization arises in many machine
learning applications, such as knowledge base
modeling and parameter estimation in latent
variable models. However, numerical meth-
ods for tensor factorization have not reached
the level of maturity of matrix factorization
methods. In this paper, we propose a new al-
gorithm for CP tensor factorization that uses
random projections to reduce the problem
to simultaneous matrix diagonalization. Our
method is conceptually simple and also ap-
plies to non-orthogonal and asymmetric ten-
sors of arbitrary order. We prove that a small
number random projections essentially pre-
serves the spectral information in the ten-
sor, allowing us to remove the dependence
on the eigengap that plagued earlier tensor-
to-matrix reductions. Experimentally, our
method outperforms existing tensor factor-
ization methods on both simulated data and
two real datasets.

1 Introduction

Given a tensor T̂ ∈ Rd×d×d of the following form:

T̂ =

k∑
i=1

πiai ⊗ bi ⊗ ci + noise, (1)

our goal is to estimate the factors ai, bi, ci ∈ Rd and
factor weights π ∈ Rk. In machine learning and statis-
tics, this tensor T̂ typically represents higher-order re-
lationships among variables, and we would like to un-
cover the salient factors that explain these relation-
ships. This problem of tensor factorization is an im-
portant problem rich with applications [1]: modeling

Appearing in Proceedings of the 18th International Con-
ference on Artificial Intelligence and Statistics (AISTATS)
2015, San Diego, CA, USA. JMLR: W&CP volume 38.
Copyright 2015 by the authors.

knowledge bases [2], topic modeling [3], community
detection [4], learning graphical models [5, 6]. The
last three fall into a class of procedures based on the
method of moments for latent-variable models, which
are notable because they provide guarantees of consis-
tent parameter estimation [7].

However, tensors, unlike matrices, are fraught with dif-
ficulties: identifiability is a delicate issue [8, 9, 10], and
computing Equation 1 is in general NP-hard [11, 12].
In this work, we propose a simple procedure to reduce
the problem of factorizing tensors to that of factor-
izing matrices. Specifically, we first project the ten-
sor T̂ onto a set of random vectors, producing a set
of matrices. Then we simultaneously diagonalize the
matrices, producing an estimate of the factors of the
original tensor. We can optionally refine our estimate
by running the procedure using the estimated factors
rather than random vectors. Our approach applies to
orthogonal, non-orthogonal and asymmetric tensors of
arbitrary order.

From a practical perspective, this approach enables
us to immediately leverage mature algorithms for ma-
trix factorization. Such algorithms often have readily
available implementations that are numerically stable
and highly optimized. In our experiments, we observed
that they contribute to improvements in accuracy and
speed over methods that deal directly with a tensor.

From a theoretical perspective, we consider both sta-
tistical and optimization aspects of our method. Most
of our results pertain to the former: we provide guar-
antees on the accuracy of a solution as a function of the
noise ε (this noise typically comes from the statistical
estimation of T from finite data) that are comparable
to those of existing methods (Table 1). Algorithms
based on matrix diagonalization have been previously
criticized [7] to be extremely sensitive to noise due to a
dependence on the smallest difference between eigen-
values (the eigengap). We show that this dependence
can be entirely avoided using just O(log k) tensor pro-
jections chosen uniformly at random. Furthermore,
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our guarantees are independent of the algorithm used
for diagonalizing the projection matrices.

The optimization aspects of our method, on the other
hand, depend on the choice of joint diagonalization
subroutine. Most subroutines enjoy local quadratic
convergence rates [13, 14, 15] and so does our method.
With sufficiently low noise, global convergence guaran-
tees can be established for some joint diagonalization
algorithms [16]. More importantly, local optima are
not an issue for our method in practice, which is in
sharp contrast to some other approaches, such as ex-
pectation maximization (EM).

Finally, we show that our method obtains accuracy
improvements over alternating least squares and the
tensor power method on several synthetic and real
datasets. On a community detection task, we obtain
up to a 15% reduction in error compared to a recently
proposed approach [4], and up to an 8% reduction in
error on a crowdsourcing task [17], matching or out-
performing a state-of-the-art EM-based estimator on
three of the four datasets.

Notation Let [n] = {1, . . . , n} denote the first n pos-
itive integers. Let ei be the indicator vector which is
1 in component i and 0 in all other components. We
use ⊗ to denote the tensor product: if u, v, w ∈ Rd,
then u ⊗ v ⊗ w ∈ Rd×d×d.1 For a third order tensor
T ∈ Rd×d×d we define vector and matrix application
as,

T (x, y, z) =

d∑
i=1

d∑
j=1

d∑
k=1

Tijkxiyjzk

T (X,Y, Z)ijk =

d∑
l=1

d∑
m=1

d∑
n=1

TlmnXliYmjZnk,

for vectors x, y, z ∈ Rd and matrices X,Y, Z ∈
Rd×k. The partial vector application (or projection)
T (I, I, w) of a vector w ∈ Rd returns a d × d matrix:

T (I, I, w)ij =
∑d
k=1 Tijkwk.

We define the CP decomposition of a tensor T ∈
Rd×d×d as T =

∑k
i=1 πiai ⊗ bi ⊗ ci, for ai, bi, ci ∈ Rd.

The rank of T is said to be k. When ai = bi = ci = ui
for all i, and the ui’s are orthogonal, we say T has a
symmetric orthogonal factorization, T =

∑k
i=1 πiu

⊗3
i .

Projecting a tensor T =
∑k
i=1 πiai ⊗ bi ⊗ ci along w

produces a matrix T (I, I, w) =
∑k
i=1 πi(c

>
i w)ai ⊗ bi.

We use λi = πi(c
>
i w) to refer to the factor weights (or

eigenvalues in the orthogonal setting) of the projected
matrix.

1 We will only consider third order tensors for the re-
mainder of this paper, though the approach naturally ex-
tends to tensors of arbitrary order.

Method µ < ‖ui − ũi‖2 < Conv.

TPM [7] 0 ε
πmin

G

Givens [18] 0 ? G

ALS [19] polylog(d)√
d

ε
πmin

+

√
k/dp−1

πmin
L

SD2 [20] 0 k5

πmin(mini6=j |πi−πj |)ε G

This paper 1
‖U−>‖22

(1−µ2)π2
min
ε L/G

Table 1: Comparison of tensor factorization algo-
rithms (Section 2.1). For a tensor with noise ε (Equa-
tion 1) and allowed incoherence µ, we show an upper
bound on the error in the recovered factors ‖ui − ũi‖2
and whether the convergence is (L)ocal or (G)lobal.
The factor weights π are assumed to be normalized
(‖π‖1 = 1). ‖U−>‖2 is the 2-norm of the inverse of
factors U−1. Our method allows for arbitrary incoher-
ence with a sensitivity to noise comparable to existing
methods ([20, 7, 19]), and with better empirical per-
formance. In the orthogonal setting, our algorithm is
globally convergent for sufficiently small ε.

For a vector of values π ∈ Rk, we use πmin and πmax to
denote the minimum and maximum absolute values of
the entries, respectively. Finally, we use δij to denote
the indicator function, which equals 1 when i = j and
0 otherwise.

2 Background

In this section, we establish the context for tensor fac-
torization, method of moments for estimating latent-
variable models, and simultaneous matrix diagonaliza-
tion.

2.1 Tensor factorization algorithms

Existing tensor factorization methods vary in their
sensitivity to noise ε in the tensor, their tolerance of
non-orthogonality (as measured by the incoherence µ)
and in their convergence properties (Table 1). The
robust tensor power method (TPM, [7]) is a popu-
lar algorithm with theoretical guarantees on global
convergence. A recently-developed coordinate-descent
method for orthogonal tensor factorization based on
Givens rotations [18] is empirically more robust than
the TPM; however it is limited to the full-rank setting
and lacks a sensitivity analysis. A further limitation
of both methods is that they only work for symmetric
orthogonal tensors. Asymmetric non-orthogonal ten-
sors could be handled by preprocessing and whitening,
but this can be a major source of errors in itself [21].
Alternating least squares (ALS) and other gradient-
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based methods [22] are simple, popular, and apply to
the non-orthogonal setting, but are known to easily
get stuck in local optima [23]. Anandkumar et al. [19]
explicitly show both local and global convergence guar-
antees for a slight modification of the ALS procedure
under certain assumptions on the tensor T̂ .

Finally, some authors have also proposed using simul-
taneous diagonalization for tensor factorization: Lath-
auwer [23] proposed a reduction, but it requires form-
ing a linear system of size O(d4) and is quite com-
plex. Anandkumar et al. [20] performed multiple ran-
dom projections, but only diagonalized two at a time
(SD2), leading to unstable results; the method also
only applies to orthogonal factors. Anandkumar et al.
[7] briefly remarked that using all the projections at
once was possible but did not pursue it. In contrast,
our method, has comparable bounds to the tensor
power method in the orthogonal setting (convention-
ally ‖π‖1 = 1 is assumed), and the ALS method in
the non-orthogonal setting. Furthermore, in the non-
orthogonal setting, our method works for arbitrary in-
coherence as long as the factors U are non-singular.

2.2 Parameter estimation in mixture models

Tensor factorization can be used for parameter esti-
mation for a wide range of latent-variable models such
as Gaussian mixture models, topic models, hidden
Markov models, etc. [7]. For illustrative purposes, we
focus on the single topic model [7], defined as follows:
For each of n documents, draw a latent “topic” h ∈ [k]
with probability P[h = i] = πi and three observed
words x1, x2, x3 ∈ {e1, . . . , ed}, which are condition-
ally independent given h with P[xj = w | h = i] = uiw
for each j ∈ {1, 2, 3}. The parameter estimation task is
to output an estimate of the parameters (π, {ui}ki=1)

given n documents {(x(i)1 , x
(i)
2 , x

(i)
3 }ni=1 (importantly,

the topics are unobserved).

Traditional approaches typically use Expectation
Maximization (EM) to optimize the marginal log-
likelihood, but this algorithm often gets stuck in lo-
cal optima. The method of moments approach is to
cast estimation as tensor factorization: define the em-
pirical tensor T̂ = 1

n

∑n
i=1 x

(i)
1 ⊗ x

(i)
2 ⊗ x

(i)
3 . It can be

shown that T̂ =
∑k
i=1 πiui⊗ui⊗ui+εR (a refinement

of Equation 1), where εR ∈ Rd×d×d is the statistical
noise which goes to zero as n→∞. A tensor factoriza-
tion scheme that asymptotically recovers estimates of
(π, {ui}ki=1) therefore provides a consistent estimator
of the parameters.

2.3 Simultaneous diagonalization

We now briefly review simultaneous matrix diagonal-
ization, the main technical driver in our approach. In

simultaneous diagonalization, we are given a set of
symmetric matrices M1, . . . ,ML ∈ Rd×d (see Section 6
for a reduction from the asymmetric case), where each
matrix can be expressed as

Ml = UΛlU
> + εRl. (2)

The diagonal matrix Λl ∈ Rk×k and the noise εRl
are individual to each matrix, but the non-singular
transform U ∈ Rd×k is common to all the matrices.
We also define the full-rank extensions,

Ū =
[
U U⊥

]
Λ̄l =

[
Λl 0
0 0

]
, (3)

where the columns of U⊥ ∈ Rd−k×d span the orthog-
onal subspace of U and Λ̄l ∈ Rd×d has been appropri-
ately padded with zeros. Note that Ū Λ̄lŪ

> = UΛlU
>.

The goal is to find an invertible transform V −1 ∈ Rd×d
such that each V −1MlV

−> is nearly diagonal. We re-
fer to the V −1 as inverse factors. When ε = 0, this
problem admits a unique solution when there are at
least two matrices [24]. There are a number of objec-
tive functions for finding V [25, 13, 26], but in this
paper, we focus on a popular one that penalizes off-
diagonal terms:

F (X) ,
L∑
l=1

off(X−1MlX
−>), off(A) =

∑
i 6=j

A2
ij . (4)

An important setting of this problem, which we refer
to as the orthogonal case, is when we know the true
factors U to be orthogonal. In this case we constrain
our optimization variable X to be orthogonal as well,
i.e. X−1 = X>.

In principle, we could just diagonalize one of the ma-
trices, say M1 (assuming its eigenvalues are distinct)
to recover U . However, when ε > 0, this procedure
is unreliable and simultaneous diagonalization greatly
improves on robustness to noise, as we will witness in
Section 4.

There exist several algorithms for optimizing F (X). In
this paper, we will use the Jacobi method [27, 25] for
the orthogonal case and the QRJ1D algorithm [26] for
the non-orthogonal case. Both techniques are based on
same idea of iteratively constructing X−1 via a prod-
uct of simple matrices X−1 = BT · · ·B2B1, where at
each iteration t = 1, . . . , T , we choose Bt to minimize
F (X). Typically, this can be done in closed form.

The Jacobi algorithm for the orthogonal case is a sim-
ple adaptation of the Jacobi method for diagonalizing
a single matrix. Each Bt is chosen to be a Givens ro-
tation [27] defined by two of the d axes i < j ∈ [d]:
Bt = (cos θ)(∆ii + ∆jj) + (sin θ)(∆ij −∆ji) for some
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angle θ, where ∆ij is a matrix that is 1 in the (i, j)-th
entry and 0 elsewhere. We sweep over all i < j, com-
pute the best angle θ in closed form using the formula
proposed by Cardoso and Souloumiac [25] to obtain
Bt, and then update each Ml by BtMlB

>
t . The above

can be done in O(d3L) time per sweep.

For the non-orthogonal case, the QRJ1D algorithm is
similar, except that Bt is chosen to be either a lower or
upper unit triangular matrix (Bt = I + a∆ij for some
a and i 6= j). The optimal value of a that minimizes
F (X) can also be computed in closed form (see [26] for
details). The running time per iteration is the same
as before.

3 Tensor factorization via
simultaneous matrix diagonalization

We now outline our algorithm for symmetric third or-
der tensors. In Section 6, we describe how to gener-
alize our method to arbitrary tensors. Observe that
the projection of T =

∑
i πiu

⊗3
i along a vector w

is a matrix T (I, I, w) =
∑
i πi(w

>ui)u
⊗2
i that pre-

serves all the information about the factors ui (as-
suming the πi(w

>ui)’s are distinct). In principle one
can recover the ui through an eigendecomposition of
T (I, I, w). However, this method is sensitive to noise:
the error ‖ui − ũi‖2 of an estimated eigenvector ũi
depends on the reciprocal of the smallest eigengap
maxj 6=i 1/|λi−λj | of the projected matrix (recall that
λi = πi(w

>ui)), which can be large and lead to inac-
curate estimates.

Instead, let us obtain the factorization of T from pro-
jections along multiple vectors w1, w2, · · · , wL. The
projections produce matrices of the form Ml =∑
i λilu

⊗2
i , with λil = πiw

>
l ui; they have common

eigenvectors, and therefore can be simultaneously di-
agonalized. As we will show later, joint diagonaliza-
tion is sensitive to the measure mini 6=j

∑L
l=1(λil −

λjl)
2/
(∑L

l=1(λil − λjl)2
)

, which averages the mini-

mum eigengap across the matrices Ml (here, λil =
πi(w

>
l ui)).

A natural question to ask is along which vectors (wl)
should we project? In Section 4 and Section 5 we show
that (a) estimates of the inverse factors (vi) are a good
choice (when the (vi) are approximately orthogonal,
they are close to the factors (ui)) and that (b) ran-
dom vectors do almost as well. This suggests a simple
two-step method: (i) first, we find approximations of
the tensor factors by simultaneously diagonalizing a
small number of random projections of the tensor; (ii)
then we perform another round of simultaneous diag-
onalization on projections along the inverse of these
approximate factors. Algorithm 1 describes the ap-
proach. Its running time is O(k2d2s), where s is the

Algorithm 1 Two-stage tensor factorization algo-
rithm

Require: T̂ = T + εR ∈ Rd×d×d, where T has a CP
decomposition T =

∑k
i=1 πiu

⊗3
i , L0 ≥ 2

Ensure: Estimates of factors, π̃, ũ1, · · · , ũk.
1: Define M(0) ← {T̂ (I, I, wl)}L0

l=1 with {wl}L0

l=1 are
chosen uniformly from the unit sphere Sd−1.

2: Obtain factors {ũ(0)i }ki=1 and their inverse

{ṽ(0)i }ki=1 from the simultaneous diagonalization of
M(0).

3: Define M(1) ← {T̂ (I, I, ṽ
(0)
i )}ki=1.

4: return Factors {ũ(1)i }ki=1 and factor weights
{π̃i}ki=1 from simultaneously diagonalizing M(1).

number of sweeps of the simultaneous diagonalization
algorithm.

4 Perturbation analysis for orthogonal
tensor factorization

In this section, we will focus on the orthogonal setting,
returning to non-orthogonal factors in Section 5. For
ease of exposition, we restrict ourselves to symmet-
ric third-order orthogonal tensors: T =

∑k
i=1 πiu

⊗3
i .

Here the inverse factors (vi) are equivalent to the fac-
tors (ui), and we do not distinguish between the two.
The proofs for this section can be found in Appendix
B.

Our sensitivity analysis builds on the perturbation
analysis result for the simultaneous diagonalization of
matrices in Cardoso [28].

Lemma 1 (Cardoso [28]). Let Ml = UΛlU
> + εRl,

l ∈ [L], be matrices with common factors U ∈ Rd×k
and diagonal Λl ∈ Rk×k. Let Ū ∈ Rd×d be a full-
rank extension of U with columns u1, u2, . . . , ud and
let Ũ ∈ Rd×d be the orthogonal minimizer of the joint
diagonalization objective F (·). Then, for all uj, j ∈
[k], there exists a column ũj of Ũ such that

‖ũj − uj‖2 ≤ ε

√√√√ d∑
i=1

E2
ij + o(ε), (5)

where E ∈ Rd×k is

Eij ,

∑L
l=1(λil − λjl)u>j Rlui∑L

l=1(λil − λjl)2
(6)

when i 6= j and i ≤ k or j ≤ k. We define Eij = 0
when i = j and λil = 0 when i > k.

In the tensor factorization setting, we jointly diag-
onalize projections M̂l, l = 1, 2, . . . , L of the noisy
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tensor T̂ along vectors wl: M̂l = T̂ (I, I, wl) =∑k
i=1 πi(w

>
l ui)u

⊗2
i + εR(I, I, wl), where Rl ,

R(I, I, wl) has unit operator norm. Cardoso’s lemma
provides bounds on the accuracy of recovering the ui
via joint diagonalization; in particular, we can further
rewrite Equation 6 in the tensor setting as:

Eij =

∑L
l=1 w

>
l pijr

>
ijwl∑L

l=1 w
>
l pijp

>
ijwl

, (7)

where pij , (πiui − πjuj) and rij , R(ui, uj , I).

Equation 7 tells us that we can control the mag-
nitude of the Eij (and hence the error on recov-
ering the ui) through appropriate choice of the
projections (wl). Ideally, we would like to en-
sure that the projected eigengap, mini6=j w

>
l pij =

mini6=j
(
πi(w

>
l ui)− πj(w>l uj)

)
, is bounded away from

zero for at least one Ml so that the denominator of
Equation 7 does not blow up.

Random projections The first step of Algorithm
1 projects the tensor along random directions. The
form of Equation 7 suggests that the error terms, Eij ,
should concentrate over several projections and we will
show that this is indeed the case. Consequently, the er-
ror terms will depend inversely on the mean of w>l pij ,
‖pij‖22 = π2

i +π2
j > π2

min. Our final result is as follows:

Theorem 1 (Tensor factorization with random pro-
jections). Let w1, . . . , wL be i.i.d. Gaussian vectors,

wl ∼ N (0, I), and let the matrices M̂l ∈ Rd×d be

constructed via projection of T̂ along w1, . . . , wL. Let
ũi be estimates of the ui derived from the M̂l. Let
L ≥ 16 log(2d(k − 1)/δ)2. Then, with probability at
least 1− δ, for every ui, there exists a ũi such that

‖ũi − ui‖2 ≤

(
2
√

2‖π‖1πmax

π2
i

+
C(δ)

πi

)
ε+ o(ε),

where C(δ) , O

(
log(kd)/δ)

√
d
L

)
.

The first of the above two terms is the fundamental
error in estimating a noisy tensor T̂ ; the second term
is due to the concentration of random projections and
can be made arbitrarily small by increasing L.

Plug-in projections The next step of our algo-
rithm projects the tensor along the approximate fac-
tors from step 2. Intuitively, if the wl are close to the
eigenvectors ui, then w>l pij = w>l (πiui−πjuj) ≈ πiδil.
Then for each i 6= j, there is some projection that en-
sures that Eij is bounded and does not depend on the
projected eigengap mini6=j

(
π(w>l ui)− π(w>l uj)

)
.

Theorem 2 (Tensor factorization with plug-in projec-
tions). Let w1, . . . , wk be approximations of u1, . . . , uk:

‖wl − ul‖2 = O(ε), and let M̂ ∈ Rd×d be constructed

via projection of T̂ along w1, . . . , wk. Let ũi be esti-
mates of the ui derived from the M̂l. Then, for every
ui, there exists a ũi such that

‖ũi − ui‖2 ≤
2
√
‖π‖1πmax

π2
i

ε+ o(ε).

Note that Theorem 1 says that with O(d) random
projections, we can recover the eigenvectors ui with
almost the same precision as if we used approximate
eigenvectors, with high probability. Moreover, as L→
∞, there is no gap between the precision of the two
methods. Theorem 2 on the other hand suggests that
we can tolerate errors on the order of O(ε) without sig-
nificantly affecting the error in recovering ũi. In prac-
tice, we find that using the plug-in estimates allows us
to improve accuracy with fewer random projections.

5 Perturbation analysis for
non-orthogonal tensor factorization

We now extend our results to the case when the tensor
T has a non-orthogonal symmetric CP decomposition:
T =

∑k
i=1 πiu

⊗3
i , where the ui are not orthogonal and

k ≤ d. We parameterize the non-orthogonality using
incoherence: µ , maxi 6=j u

>
i uj and the norm of the in-

verse factor ‖V >‖2 where V , U−1. Compared to the

orthogonal setting, our bounds reveal an O
(
‖V >‖22
1−µ2

)
dependence on incoherence. Note that unlike previous
work, our algorithm does not require an explicit bound
on µ (i.e. any µ < 1 is sufficient), as long as the factors
U are non-singular. Proofs for this section are found
in Appendix C.

We base our analysis on the perturbation result by
Afsari [24].

Lemma 2 (Afsari [24]). Let Ml = UΛlU
> + εRl, l ∈

[L], be matrices with common factors U ∈ Rd×k and
diagonal Λl ∈ Rk×k. Let Ū ∈ Rd×d be a full-rank
extension of U with columns u1, u2, . . . , ud and let V̄ =
Ū−1, with rows v1, v2, . . . , vd. Let Ũ ∈ Rd×d be the
minimizer of the joint diagonalization objective F (·)
and let Ṽ = Ũ−1.

Then, for all uj, j ∈ [k], there exists a column ũj of

Ũ such that

‖ũj − uj‖2 ≤ ε

√√√√ d∑
i=1

E2
ij + o(ε), (8)
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where the entries of E ∈ Rd×k are bounded by

|Eij | ≤
1

1− ρ2ij

(
1

‖λi‖22
+

1

‖λj‖22

)
(∣∣∣∣∣

L∑
l=1

v>i Rlvjλjl

∣∣∣∣∣+

∣∣∣∣∣
L∑
l=1

v>i Rlvjλil

∣∣∣∣∣
)
,

when i 6= j and Eij = 0 when i = j and λil = 0 when
i > k. Here λi = (λi1, λi2, ..., λiL) ∈ RL and ρij =

λ>i λj

‖λi‖2‖λj‖2 is the modulus of uniqueness, a measure of

how ill-conditioned the problem is.

In the orthogonal case, we had a dependence on the
eigengap λi − λj . Now the error crucially depends on
the modulus of uniqueness, ρij . The non-orthogonal
simultaneous diagonalization problem has a unique so-
lution iff |ρij | < 1 for all i 6= j [24]. In the orthogo-
nal case, ρij = 0. It can be shown that ρij can once
again be controlled by appropriately choosing the pro-
jections (wl).

To get a handle on the difficulty of the problem, let us
assume that the vectors ui are incoherent: u>i uj ≤ µ
for all i 6= j. Intuitively, the problem is easy when
µ ≈ 0 and hard when µ ≈ 1.

Random projections Intuitively, random projec-
tions are isotropic and hence we expect the projections
λi and λj to be nearly orthogonal to each other. This
allows us to show that ρij ≤ O(µ), which matches our
intuitions on the difficulty of the problem. Our final
result is the following:
Theorem 3 (Non-orthogonal tensor factorization
with random projections). Let w1, . . . , wL be i.i.d. ran-
dom Gaussian vectors, wl ∼ N (0, I), and let the

matrices M̂l ∈ Rd×d be constructed via projection

of T̂ along w1, . . . , wL. Assume incoherence µ on

(ui): u>i uj ≤ µ. Let L0 ,
(

50
1−µ2

)2
and let L ≥

L0 log(15d(k − 1)/δ)2. Then, with probability at least
1− δ, for every ui, there exists a ũi such that

‖ũj − uj‖2 ≤ O

(√
‖π‖1πmax

π2
min

‖V >‖22
1− µ2

(1 + C(δ))

)
ε+ o(ε),

where C(δ) ,

(
log(kd/δ)

√
d
L

)
.

Once again, the error decomposes into a fundamental
recovery error and a concentration term. Note that
the error is sensitive to the smallest factor weight,
πmin. This dependence arises from the sensitivity of
the non-orthogonal factorization method to the λi with
the smallest norm and is unavoidable.

Plug-in projections When using plug-in estimates
for the projections, two obvious choices arise: esti-
mates of the columns of the factors, (ui), or the rows

of the inverse, (vi). Using estimates of (ui) leads to
ρij ≤ O(µ), similar to what we saw with random pro-
jections. However, using estimates of (vi) ensures that
the λi are nearly orthogonal, resulting in ρij ≈ 0! This
leads to estimates that are less sensitive to the inco-
herence µ.

Theorem 4 (Non-orthogonal tensor factorization
with plug-in projections). Let w1, . . . , wk be approx-
imations of v1, . . . , vk: ‖wl − vl‖2 ≤ O(ε), and let the

matrices M̂l ∈ Rd×d be constructed via projection of
T̂ along w1, . . . , wk. Also assume that the ui are in-
coherent: u>i uj ≤ µ when j 6= i. Then, for every uj,
there exists a ũj such that

‖ũj − uj‖2 ≤ O

(√
‖π‖1πmax

π2
min

‖V >‖32

)
ε+ o(ε).

6 Asymmetric and higher-order
tensors

In this section, we present simple extensions to the
algorithm to asymmetric and higher order tensors.

Asymmetric tensors We use a reduction to han-
dle asymmetric tensors. Observe that the l-th pro-
jection Ml of an asymmetric tensor has the form
Ml =

∑
i λiuilv

>
il = UΛlV

>, for some diagonal (not
necessarily positive) matrix Λl and common U, V , not
necessarily orthogonal. For each Ml, define another

matrix Nl =
(

0 M>l
Ml 0

)
and observe that

[
0 M>l
Ml 0

]
=

1

2

[
V V
U −U

] [
Λl 0
0 −Λl

] [
V V
U −U

]>
.

The (Nl) are symmetric matrices with common (in
general, non-orthogonal) factors. Therefore, they can
be jointly diagonalized and from their components, we
can recover the components of the (Ml). This reduc-
tion does not change the modulus of uniqueness of the
problem: the factor weights remain unchanged.

Higher order tensors Finally, if we have a higher
order (say fourth order) tensor T =

∑
i πiai⊗bi⊗ci⊗di

then we can first determine the ai, bi by projecting
into matrices T (I, I, w, u) =

∑
i π(w>ci)(u

>di)ai⊗ bi,
and then determine the ci, di by projecting along the
first two components. Our bounds only depend on the
dimension of the matrices being simultaneously diag-
onalized, and thus this reduction does not introduce
additional error. Intuitively, we should expect that
additional modes of a tensor should provide more in-
formation and thus help estimation, not hurt it. How-
ever, note that as the tensor order increases, the noise
in the tensor will presumably increase as well.
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7 Convergence properties.

The convergence of our algorithm depends on the
choice of joint diagonalization subroutine. Theoreti-
cally, the Jacobi method, the QRJ1D algorithm, and
other algorithms are guaranteed to converge to a local
minimum at a quadratic rate [27, 14, 29]. The ques-
tion of global convergence is currently open [30, 25].
Empirically though, these algorithms have been found
in the literature to converge reliably to global minima
[27, 25, 30] and to corroborate this claim, we conducted
a series of experiments [16].

We first examined convergence to global minima in
the orthogonal setting. In 1000 trials of the Jacobi
algorithm on random sets of matrices for various ε
and d = L = 15 , we found that the objective val-
ues formed a Gaussian distribution around ε (the best
accuracy that can be achieved). Then, on each of
our real crowdsourcing datasets, we ran our algorithm
from 1000 random starting points; in every case, the
algorithm converged to the same solution (unlike EM).
This suggests that our diagonalization algorithm is not
sensitive to local optima. To complement this empir-
ical evidence, we also established that the Jacobi al-
gorithm will converge to the global minimum when ε
is sufficiently small and when the algorithm is initial-
ized with the eigendecomposition of a single projection
matrix [16].

We also performed similar experiments in the non-
orthogonal setting using the QRJ1D algorithm. Unlike
Jacobi, QRJ1D suffers from local optima, which is ex-
pected since the general CP decomposition problem is
NP-hard. However, local optima appear to only affect
matrices with bad incoherence values, and in several
real world experiments (see below), non-orthogonal
methods fared better their orthogonal counterparts.

8 Experiments

In the orthogonal setting, we compare our algorithms
(OJD0, which uses random projections, and OJD1
which uses with plug-in) with the tensor power method
(TPM), alternating least squares (ALS), and with the
method of de Lathauwer [23]. In the non-orthogonal
setting, we compare de Lathauwer, alternating least
squares (ALS), non-linear least squares (NLS), and
our non-orthogonal methods (NOJD0 and NOJD1).

Random versus plug-in projections We gener-
ated random tensors T =

∑k
i=1 πu

⊗3
i + εR with Gaus-

sian entries in π,R and ui distributed uniformly in
the sphere Sd−1. In Figure 1, we plot the error∑k
i=1

1
k‖ui − ũi‖2 (averaged over 1000 trials) of using

L random projections (blue line), versus using L ran-
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Figure 1: Comparing random vs. plug-in projections
(d = k = 10, εortho = 0.05, εnonortho = 0.01)

dom projections followed by plug-in (green line). The
accuracy of random projections tends to a limit that
is immediately achieved by the plug-in projections, as
predicted by our theory. In the orthogonal setting,
plug-in reduces the total number of projected matrices
L required to achieve the limiting error by three-fold
(20 vs. 60 when d = 10). In the non-orthogonal set-
ting, the difference between the two regimes is much
smaller.

Synthetic accuracy experiments We generated
random tensors for various d, k, ε using the same pro-
cedure as above. We vary ε and report the average
error

∑k
i=1

1
k‖ui − ũi‖2 across 50 trials.

Our method realizes its full potential in the full-rank
non-orthogonal setting, where OJD0 and OJD1 are
up to three times more accurate than alternative meth-
ods (Figure 2, top). In the (arguably easier) under-
complete case, our methods do not achieve more than a
10% improvement, and overall, all algorithms fare sim-
ilarly (Figure 4 in the supplementary material). Alter-
nating least squares displayed very poor performance,
and we omit it from our graphs.

In the full rank setting, there is little difference in per-
formance between our method and Lathauwer (Fig-
ure 2, bottom). In both the full and low-rank cases
(Figure 2, bottom and Figure 5 in the supplementary
material), we consistently outperform the standard ap-
proaches, ALS and NLS, by 20–50%. Although we do
not always outperform Lathauwer (a state-of-the-art
method), NOJD0 and NOJD1 are faster and much
simpler to implement.

We also tested our method on the single topic model
from Section 2.2. For d = 50 and k = 10, over 50 trials
in which model parameters were generated uniformly
at random in Sd−1, OJD0 and OJD1 obtained error
rates of 0.05 and 0.055 respectively, followed by TPM
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Figure 2: Performance on full-rank synthetic tensors.

(0.62 error), and Lathauwer (0.65 error). Additional
experiments on asymmetric tensors and on running
time are in the supplementary material.

Community detection in a social network
Next, we use our method to detect communities in a
real Facebook friend network at an American univer-
sity [31] using a recently developed estimator based
on the method of moments [4]. We reproduce a previ-
ously proposed methodology for assessing the perfor-
mance of this estimator on our Facebook dataset [31]:
ground truth communities are defined by the known
dorm, major, and high school of each student; em-
pirical and true community membership vectors ĉi, ci
are matched using a similarity threshold t > 0; for
a given threshold, we define the recovery ratio as the
number of true ci to which an empirical ĉi is matched
and we define the accuracy to be the average `1 norm
distance between ci and all the ĉi that match to it.
See [31] for more details. By varying t > 0, we ob-
tain a tradeoff curve between the recovery ratio and
accuracy (Figure 3). Our OJD1 method determines
the top 10 communities more accurately than TPM;
finding smaller communities was equally challenging
for both methods.

Label prediction from crowdsourcing data
Lastly, we predict data labels within several datasets
based on real-world crowdsourcing annotations using
a recently proposed estimator based on the method
of moments [17]. We incorporate our tensor factor-
ization algorithms within the estimator and evaluate
the approach on the same datasets as [17] except one,
which we could not obtain. In addition to the previ-
ously defined methods, we also compare to the expec-
tation maximization algorithm initialized with major-
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Figure 3: Accuracy/recovery tradeoff for community
detection.

Table 2: Crowdsourcing experiment results

Dataset Web RTE Birds Dogs
TPM 82.25 88.75 87.96 84.01
OJD 82.33 90.00 89.81 84.01

NOJD 83.49 90.50 89.81 84.26
ALS 83.15 88.75 88.89 84.26

LATH 83.00 88.75 88.89 84.26
MV+EM 83.68 92.75 88.89 83.89

Size 2665 800 106 807

ity voting by the workers (MV+EM). We measure
the label prediction accuracy. Overall, NOJD1 out-
performs all other tensor-based methods on three out
of four datasets and results in accuracy gains of up
to 1.75% (Table 2). OJD1 outperforms the TPM
on every dataset but one, and in two cases even out-
performs ALS and Lathauwer, even though they are
not affected by whitening. Most interestingly, on two
datasets, at least one of our methods matches or out-
performs the EM-based estimator.

9 Discussion

We have presented a simple method for tensor fac-
torization based on three ideas: simultaneous matrix
diagonalization, random projections, and plugin esti-
mates. Joint diagonalization methods for tensor fac-
torization have been proposed in the past, but they
have either been computationally too expensive [23]
or numerically unstable [20]. We overcome both these
limitations using multiple random projections of the
tensor. Note that our use of random projections is
atypical: instead of using projections for dimensional-
ity reduction (e.g. [32]), we use it to reduce the order
of the tensor. Finally, we improve estimates of the fac-
tors retrieved with random projections by using them
as plugin estimates, a common technique in statistics
to improve statistical efficiency [33]. Extensive exper-
iments show that our factorization algorithm is more
accurate than the state-of-the-art.
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Figure 4: Algorithm performance in the orthogonal setting.
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Figure 5: Algorithm performance in the non-orthogonal setting.

A Experiments

A.1 Synthetic experiments

Orthogonal tensors We start by generating random tensors T =
∑
i πu

⊗3
i + εR with Gaussian entries in

π,R and ui distributed uniformly in the unit sphere Sd−1. We let d = 25, 50, 100 and in each case consider two
regimes: undercomplete tensors with k = 0.2d and full rank tensors, k = d. We vary ε and report the average error
‖ũi − ui‖2 across all eigenvectors ui and across 50 trials. In the orthogonal setting, we compare our algorithms
(OJD0 uses random projections, OJD1 is with plugin) with the tensor power method (TPM), alternating least
squares (ALS), and with the method of de Lauthauwer [23]. Alternating least squares displayed very poor
performance, and we omit it from our graphs. In the undercomplete case (Figure 4, right), all algorithms fare
similarly and errors are within 10% of each other. Our method realizes its full potential in the full-rank setting,
where OJD0 and OJD1 are up to three times more accurate than alternative methods ((Figure 4, left).

Non-orthogonal tensors In the non-orthogonal setting, we compare de Lathauwer, alternating least squares
(ALS), non-linear least squares (NLS), and our non-orthogonal methods (NOJD0 and NOJD1). We follow
the same experimental setup as above and summarize our experiments in Figure 5. In the undercomplete setting,
Lathauwer’s algorithm has the highest accuracy, about a 10% more than our approach (Figure 5, right). In the
full rank setting, there is little difference in performance between our method and Lathauwer’s. In both settings,
we consistently outperform the standard approaches, ALS and NLS, by 20-50% (Figure 5, left). Although we do
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Figure 7: Number of flops performed by various algorithms.

not always outperform Lauthauwer’s state-of-the-art method, NOJD0 and NOJD1 are faster and much simpler
to implement.

Asymmetric tensors Lastly, we evaluate the extension of our algorithm to tensors of size 50×50×50 having
three distinct sets of asymmetric components (one in each mode). We find that performance is consistent with
the symmetric setting, in both orthogonal and non-orthogonal regimes; our method outperforms is competitors
by at least 25%, and in the non-orthogonal setting, it achieves an error reduction of up to 70% over Lathauer
(Figure 6).

A.2 Algorithm running time

Figure 7 compares the running time in flops of the main algorithms.

We obtain the plots in Figure 7 by calculating flops as follows. The Jacobi method performs at each sweep
2dL(dk −

(
k
2

)
) flops (where L is the number of matrices); the QRJ1 non-orthogonal diagonalization algorithm

performs 4d3L flops per sweep. The tensor power method performs a total of Lkd3 flops (where L is the number
of restarts), times the number of steps it takes to reach convergence for a given eigenvector. The flop count of
Lathauwer’s method is much higher than that of other method’s: at one stage, it requires finding the SVD of a
d4 × k2 matrix. Consequently, we do not include it in our summary.
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B Proofs for orthogonal tensor factorization

In this section we prove perturbation bounds for our algorithm in the setting of orthogonal tensors.

Recall that we observe T̂ = T + εR where T =
∑k
i=1 πiu

⊗3
i where πi are factor weights, ui ∈ Rd are orthogonal

unit vectors and R is, without loss of generality, symmetric with ‖R‖op = 1. Our objective is to estimate π
and (ui). Algorithm 1 does so by simultaneously diagonalizing a number of projections of T ; we make use of
projections along random vectors and along approximate factors. In this section we will show why both schemes
recover πi and (ui) with high probability.

Setup Let M = {M1, . . . ,ML} be the projections of T along vectors w1, . . . , wL, and M̂ = {M̂1, . . . , M̂L} be

the projections of T̂ along w1, . . . , wL. We have that Ml =
∑d
i=1 πi(w

>
l ui)ui⊗ui and that M̂l = Ml+ εRl, where

Rl = R(I, I, wl). Thus, Ml are a set of simultaneously diagonalizable matrices with factors U and factor weights
λil , πi(w

>
l ui). From the discussion in Section 2, let Ū be a full-rank extension of U , with columns u1, u2, . . . ud.

Let π̃ and ũ be a factorization of T̂ returned by Algorithm 1. From Lemma 1, we have that

‖ũj − uj‖2 ≤ ε

√√√√ d∑
i=1

E2
ij + o(ε), (9)

for j ∈ [k] where E ∈ Rd×k has entries

Eij =

0 for i = j∑L
l=1(λil−λjl)u

>
j Rlui∑L

l=1(λil−λjl)2
for i 6= j.

(10)

For notational convenience, let pij , (πiui − πjuj) so that λil − λjl = w>l pij . Let rij , R(ui, uj , I) so that

u>j Rlui = R(uj , ui, wl) = R(ui, uj , I)>wl = r>ijwl.

The expression for Eij when j 6= i simplifies to,

Eij =

∑L
l=1 w

>
l pijr

>
ijwl∑L

l=1 w
>
l pijp

>
ijwl

. (11)

In the rest of this section, we will bound Eij for different choices of {wl}Ll=1.

B.1 Plugin projections

In Section 4 we proposed using approximate factors ũi as directions to project the tensor T̂ along. In this section,
we show that doing so guarantees small errors in ui.

We begin by bounding the terms Eij .

Lemma 3 (Eij with plug-in projections). Let w1, . . . , wk be unit-vectors approximations of the unit vectors

u1, . . . , uk: ‖wl − ul‖2 ≤ γ (so L = k), and let M̂ = {M̂1, . . . , M̂L} be constructed via projection of T̂ along

w1, . . . , wL. If the set of matrices M̂ is simultaneously diagonalized, then to a first-order approximation,

Eij =
p>ijrij

‖pij‖2
+O(γ).

Proof. We have that

w>l (pij) = (ul + (wl − ul))>(πiui − πjuj)
= πiδil − πjδjl + (wl − ul)>(πiui − πjuj)
≤ πiδil − πjδjl + ‖wl − ul‖2‖πiui − πjuj‖2
= πiδil − πjδjl +O(γ),
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where δij = 1 if i = j and 0 otherwise.

Thus,

Eij =

∑L
l=1 w

>
l pijr

>
ijwl∑L

l=1 w
>
l pijp

>
ijwl

=

∑L
l=1 (πiδil − πjδjl +O(γ)) r>ijwl∑L
l=1(πiδil − πjδjl +O(γ))2

=
πir
>
ijwi − πjr>ijwj +O(γ)

π2
i + π2

j +O(γ)

=
πir
>
ijui + πi(wi − ui)>rij − πjr>ijuj − πj(wj − uj)>rij +O(γ)

π2
i + π2

j +O(γ)

Note that (wi − ui)>rij = O(γ) and (wj − uj)>rij = O(γ), and hence both can be included in the O(γ) term.

Eij =
r>ij(πiui − πjuj) +O(γ)

π2
i + π2

j +O(γ)
.

Finally, recall that pij , (πiui − πjuj) and that ‖pij‖2 = π2
i + π2

j . Combining this with the observation that
1

1−x = 1 + x+ o(x), we obtain

Eij =
p>ijrij

‖pij‖2
+O(γ).

Next, we use these term-wise bounds to bound the error in ui.

Theorem 5 (Tensor factorization with plugin projections). Let w1, . . . , wk be approximations of u1, . . . , uk such

that ‖wl − ul‖2 ≤ γ = O(ε), and let M̂ = {M̂1, . . . , M̂L} be constructed via projection of T̂ along w1, . . . , wL.
Then, for j ∈ [k],

‖ũj − uj‖2 ≤

(
2
√
‖π‖1πmax

π2
i

)
ε+ o(ε).

Proof. From Equation 9, we have that,

‖ũj − uj‖2 ≤ ε

√√√√ d∑
j=1;j 6=i

E2
ij ,

for all j ∈ [k]. By Lemma 3, we get,

Eij =
p>ijrij

‖pij‖2
+O(ε),

and thus,

‖ũj − uj‖2 ≤ ε

√√√√ d∑
i=1;i 6=j

(
p>ijrij

‖pij‖2

)2

+ o(ε).
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Now, we must bound
∑d
i=1;i 6=j(p

>
ijrij)

2. We expect this the projection to mostly preserve the norm of pij because

rij are effectively random vectors. Using Lemma 10 with µ = 0, we get that
∑d
i=1;i 6=j(p

>
ijrij)

2 ≤ 4‖π‖1πmax.

Finally, ‖pij‖22 = π2
i + π2

j ≥ π2
j .

‖ũj − uj‖2 ≤

(√
4‖π‖1πmax

π2
j

)
ε+ o(ε)

≤

(
2
√
‖π‖1πmax

π2
j

)
ε+ o(ε).

B.2 Random projections

Let us now consider the case when {wl}Ll=1 are random Gaussian vectors and present similar bounds.

Given Equation 11, we should expect Eij to sharply, and now show that this is indeed the case.

Lemma 4 (Concentration of error Eij). Let w1, . . . , wL be i.i.d. random Gaussian vectors wl ∼ N (0, I), and let

M̂ = {M̂1, . . . , M̂L} be constructed via projection of T̂ along w1, . . . , wL. If the set of matrices M̂ is simultane-
ously diagonalized, then the first-order error Eij is sharply concentrated. If L ≥ 16 log(2δ), then with probability
at least 1− δ,

Eij ≤
p>ijrij

‖pij‖22
+

10 log(2/δ)√
L

‖rij‖2
‖pij‖2

.

Proof. The numerator and denominator of Equation 11 are both distributed as the sum of χ2 variables; we show
below that they respectively concentrate about p>ijrij and ‖pij‖22.

From Lemma 13, we have that the following hold independently with probability at least 1− δ/2,

1

L

L∑
l=1

w>l pijr
>
ijwl ≤ p>ijrij + ‖pij‖‖rij‖

(
3

√
log(2/δ)

L

)
1

L

L∑
l=1

w>l pijp
>
ijwl ≥ ‖pij‖2

(
1− 2 log(2/δ)√

L

)

Applying a union bound on both these events, we get that with probability at least 1− δ,

Eij =

∑L
l=1 w

>
l pijr

>
ijwl∑L

m=1 ‖w>mpij‖22

≤
p>ijrij + ‖pij‖2‖rij‖2

(
3
√

log(2/δ)
L

)
‖pij‖22

(
1− 2 log(2/δ)√

L

) .

Note that with the given condition on L, 2 log(2/δ)√
L

< 1
2 . Using the property that when x ≤ 1

2 , 1
1−x ≤ 1 + 2x, we

have that

1

1− 2 log(2/δ)√
L

≤ 1 +
4 log(2/δ)√

L
.
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Consequently,

Eij ≤
1

‖pij‖22

(
p>ijrij + ‖pij‖2‖rij‖2

(
3

√
log(2/δ)

L

))(
1 +

4 log(2/δ)√
L

)

≤
p>ijrij

‖pij‖22

(
1 +

4 log(2/δ)√
L

)
+ 6
‖rij‖2
‖pij‖2

√
log(2/δ)

L

≤
p>ijrij

‖pij‖22
+

10 log(2/δ)√
L

‖rij‖2
‖pij‖2

.

With this term-wise bound, we can again proceed to bounding the error ui.

Theorem 6 (Tensor factorization with random projections). Let w1, . . . , wL be i.i.d. random Gaussian vectors,

wl ∼ N (0, I), and let M̂ = {M̂1, . . . , M̂L} be constructed via projection of T̂ along w1, . . . , wL. Furthermore, let
L ≥ 16 log(2d(k − 1)/δ)2, then, with probability at least 1− δ,

‖ũj − uj‖2 ≤

(
2
√

2‖π‖1πmax

π2
i

)
ε+

(
20
√

2 log(2d(k − 1)/δ)

√
d/L

πi

)
ε+ o(ε).

for all j ∈ [k].

Proof. From Equation 9, we have that,

‖ũj − uj‖2 ≤ ε

√√√√ d∑
i=1;i 6=j

E2
ij + o(ε).

By Lemma 4, with probability at least 1− δ/(d(k − 1)),

Eij ≤
|p>ijrij |
‖pij‖22

+
10 log(2d(k − 1)/δ)√

L

‖rij‖2
‖pij‖2

.

Applying a union bound over (Eij)
d
j 6=i, we have that with probability at least 1− δ,

‖ũj − uj‖2 ≤ ε

√√√√ d∑
i=1;i 6=j

2

(
p>ijrij

‖pij‖22

)2

+ ε
10 log(2d(k − 1)/δ)√

L

√√√√ d∑
i=1;i 6=j

2

(
‖rij‖2
‖pij‖2

)2

+ o(ε),

for all j ∈ [k]. We have used the fact that for a, b ≥ 0, (a+ b)2 = a2 + 2ab+ b2 ≤ a2 + (a2 + b2) + b2 = 2a2 + 2b2

and
√
a+ b ≤

√
a+
√
b.

Note that ‖pij‖2 =
√
π2
i + π2

j ≥ |πi|. In Lemma 10, we show that
∑d
i=1;i 6=j(p

>
ijrij)

2 ≤ 4‖π‖1πmax. Furthermore,

‖rij‖ ≤ 1 by the operator norm bound on R. Thus, we get,

‖ũj − uj‖2 ≤

(
2
√

2‖π‖1πmax

π2
i

)
ε+

(
20
√

2 log(2d(k − 1)/δ)

√
d/L

πi

)
ε+ o(ε).

C Proofs for non-orthogonal tensor factorization

In this section we extend our previous analysis to non-orthogonal tensor decomposition.
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Setup As before, let M = {M1, . . . ,ML} be the projections of T along vectors w1, . . . , wL, and M̂ =

{M̂1, . . . , M̂L} be the projections of T̂ along w1, . . . , wL. We have that Ml =
∑d
i=1 πi(w

>
l ui)ui ⊗ ui and that

M̂l = Ml + εRl, where Rl = R(I, I, wl). Thus, Ml are a set of simultaneously diagonalizable matrices with
factors U and factor weights λil , πi(w

>
l ui). Let Ū be the full-rank extension of U with unit-norm columns

u1, u2, . . . , ud. In this setting, however, the factor U is not orthogonal. Let V̄ = Ū−1, with rows v1, v2, . . . , vd.
Note that we place our incoherence assumption on the columns of U and present results in terms of the 2-norm
of V >. When U is incoherent, it can be shown that ‖V >‖2 ≤ 1+O(µ). Finally, note that in the orthogonal case,
when µ = 0, the rows (vi) and columns (ui) are identical, and no distinction between the two need be made.

Let π̃ and ũ be a factorization of T̂ returned by Algorithm 1. From Lemma 2, we have that

‖ũj − uj‖2 = ε

√√√√ d∑
i=1

E2
ij ,

where the entries of E ∈ Rd×k are bounded by Lemma 16:

|Eij | ≤
1

1− ρ2ij

(
1

‖λi‖22
+

1

‖λj‖22

)(∣∣∣∣∣
L∑
l=1

v>i Rlvjλjl

∣∣∣∣∣+

∣∣∣∣∣
L∑
l=1

v>i Rlvjλil

∣∣∣∣∣
)
, (12)

where λi ∈ RL is the vector of i-th factor values of Ml, i.e. λil is the i-th factor value of matrix Ml (i.e.

λil = (Λl)ii) and ρij =
λ>i λj

‖λi‖2‖λj‖2 , the modulus of uniqueness, is a measure of the singularity of the problem.

When λil is generated by projections, λil = πiw
>
l ui. Let rij , R(vi, vj , I) so that

v>i Rlvj = R(vi, vj , wl) = R(vi, vj , I)>wl = r>ijwl.

Note that ‖rij‖2 ≤ ‖vi‖2‖vj‖2 ≤ ‖V >‖22.

Equation 12 then simplifies to,

|Eij | ≤
1

1− ρ2ij

(
1

‖λi‖22
+

1

‖λj‖22

)(
|πj |

∣∣∣∣∣
L∑
l=1

w>l ujr
>
ijwl

∣∣∣∣∣+ |πi|

∣∣∣∣∣
L∑
l=1

w>l uir
>
ijwl

∣∣∣∣∣
)
, (13)

where ‖λi‖22 = π2
i

∑L
l=1 w

>
l uiu

>
i wl, and ρij has the following expression,

ρij =
λ>i λj

‖λi‖2‖λj‖2
=

∑L
l=1 w

>
l uiu

>
j wl√

(
∑L
l=1 w

>
l uiu

>
i wl)(

∑L
l=1 w

>
l uju

>
j wl)

. (14)

Observe that the terms ui interact with the factor weights λil, while the terms vi interact only with the noise
terms Rl.

In the rest of this section, we will bound Eij and ρij with different choices of {wl}Ll=1.

C.1 Plugin projections

We now assume we have plugin estimates (wl) that are close to the inverse factors (vl): ‖wl − vl‖2 ≤ O(γ) for
l ∈ [k]. Then,

w>l ui = (vl + (wl − vl))>ui

= v>l ui + ||wl − vl||2 ·
(wl − vl)>ui
||wl − vl||2

= v>l ui +O(γ).

Recall that V = U−1, so v>l ui = δil.
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It will be useful to keep track of ‖λi‖22,

‖λi‖22 =

L∑
l=1

π2
i (w>l ui)

2

= π2
i

k∑
l=1

(v>l ui +O(γ))2

= π2
i +O(γ). (15)

Lemma 5 (Modulus of uniqueness for plugin projections). Let w1, . . . , wk be approximations of v1, . . . , vk:

‖wl − vl‖2 ≤ O(γ) for l ∈ [k], and let M̂ = {M̂1, . . . , M̂L} be constructed via projection of T̂ along w1, . . . , wL.
Then, for i 6= j,

ρ2ij ≤ O(γ),

Proof. Let us first bound the numerator of Equation 14.

(λ>i λj)
2 = π2

i π
2
j

(
L∑
l=1

w>l uiu
>
j wl

)2

= π2
i π

2
j

(
L∑
l=1

v>l uiu
>
j vl +O(γ)

)2

= π2
i π

2
j δij +O(γ)

= O(γ).

Using Equation 15, we get that

ρ2ij =
O(γ)

(1 +O(γ))(1 +O(γ))

= O(γ).

where in the last line we used the fact that 1
1−x = 1 + x+ o(x).

Lemma 6 (Bound on Eij for non-orthogonal plugin projections). Let w1, . . . , wk be approximations of v1, . . . , vk:

‖wl − vl‖2 ≤ O(γ) for l ∈ [k], and let M̂ = {M̂1, . . . , M̂L} be constructed via projection of T̂ along w1, . . . , wL.

|Eij | ≤

(
1

π2
i

+
1

π2
j

)
‖V >‖2 p>ijrij +O(γ),

where pij , |πi| vi
‖vi‖2 + |πj | vj

‖vj‖2 .

Proof. Let us bound each term within our expression for Eij (Equation (13)).

k∑
l=1

w>l ujr
>
ijwl =

k∑
l=1

v>l ujr
>
ijvl +O(γ)

≤ r>ijvj +O(γ).

Similarly,

k∑
l=1

w>l uir
>
ijwl ≤ r>ijvi +O(γ),
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From Equation (15), we have

‖λi‖22 = |πi|2 +O(γ)

‖λj‖22 = |πj |2 +O(γ).

From Lemma 5 we have that

ρ2ij ≤ O(γ)

1

1− ρ2ij
≤ 1

1−O(γ)
+O(γ)

≤ 1 +O(γ).

Finally,

|Eij | ≤

(
1

π2
i

+
1

π2
j

)(
(|πi|vi + |πj |vj)>rij

)
+O(γ)

≤

(
1

π2
i

+
1

π2
j

)
‖V >‖2 p>ijrij +O(γ).

Note that the error terms depend not on ui but rather vi. This is because the projections (wl) are chosen to be
close to the vi. Now, let us bound the error in ui.

Theorem 7 (Non-orthogonal tensor factorization with plug-in projections). Let w1, . . . , wk be approximations

of v1, . . . , vk: ‖wl − vl‖2 ≤ O(ε) for l ∈ [k] and let M̂ = {M̂1, . . . , M̂L} be constructed via projection of T̂ along
w1, . . . , wL. Then, for all j ∈ [k],

‖ũj − uj‖2 ≤ 8ε

√
‖π‖1πmax

π2
min

‖V >‖32 + o(ε).

Proof. From Lemma 15 we have that

‖ũj − uj‖2 ≤ ε

√√√√ d∑
i=1

E2
ij + o(ε),

for j ∈ [k], where Eij is bounded in Lemma 6 as follows:

|Eij | ≤

(
1

π2
i

+
1

π2
j

)
‖V >‖2 p>ijrij +O(ε)

≤ 2

π2
min

‖V >‖2 p>ijrij +O(ε).

Consequently,

‖ũj − uj‖2 ≤ ε

√√√√ d∑
i 6=j

E2
ij

≤ 2ε

π2
min

√√√√ d∑
i 6=j

(
‖V >‖2 p>ijrij +O(ε)

)2
+ o(ε)

≤ 4ε

π2
min

√√√√ d∑
i6=j

(
‖V >‖2 p>ijrij

)2
+

+ o(ε),
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where we have used the fact that (a+ b)2 ≤ 2(a2 + b2) and that
√
a+ b ≤

√
a+
√
b.

From Lemma 10 we have, p>ijrij ≤ 4‖π‖1πmax‖V >‖42,

‖ũj − uj‖2 ≤
4ε

π2
min

(√
4‖π‖1πmax‖V >‖62

)
+ o(ε)

≤ 8ε

√
‖π‖1πmax

π2
min

‖V >‖32 + o(ε).

C.2 Random projections

We now study the case where the random projections, (wl), are drawn from a standard Gaussian distribution.
First let us show that the modulus of uniqueness ρij sharply concentrates around u>i uj .

Lemma 7 (Modulus of Uniqueness with random projections). Let w1, · · ·wL ∈ Rd be entries drawn i.i.d. from
the standard Normal distribution. Let L > 16 log(3/δ)2 Then, with probability at least 1− δ,

ρij ≤ u>i uj +
10 log(3/δ)√

L
.

Proof. Observe from Equation 14 that the numerator and the denominator of ρij are essentially distributed as
a χ2 distribution (Lemma 13). Thus, with probability at least 1− δ/3 each, the following hold,

1

L

L∑
l=1

w>l uiu
>
j wl ≤ u>i uj + ‖ui‖2‖uj‖2

(
3

√
log(3/δ)

L

)
1

L

L∑
l=1

(w>l ui)
2 ≥ ‖ui‖2

(
1− 2 log(3/δ)√

L

)
1

L

L∑
l=1

(w>l uj)
2 ≥ ‖uj‖2

(
1− 2 log(3/δ)√

L

)
.

Noting that ‖ui‖2 = ‖uj‖2 = 1 and applying a union bound on the above three events, we get that with
probability at least 1− δ,

ρij ≤
u>i uj + 3

√
log(3/δ)

L

1− 2 log(3/δ)√
L

.

Under the conditions on L, 2 log(3/δ)√
L

≤ 1
2 . Applying the property that when x < 1

2 , 1
1−x ≤ 1 + 2x,

1

1− 2 log(3/δ)√
L

≤ 1 +
4 log(3/δ)√

L
< 2.

Finally,

ρij ≤

(
u>i uj + 3

√
log(3/δ)

L

)(
1 +

4 log(3/δ)√
L

)

≤ u>i uj
(

1 +
4 log(3/δ)√

L

)
+ 3

√
log(3/δ)

L
× 2

≤ u>i uj +
10 log(3/δ)√

L
.
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Let’s now bound the inverse modulus of uniqueness.

Lemma 8 (Bounding inverse modulus of uniqueness). Let w1, · · ·wL ∈ Rd be entries drawn i.i.d. from the

standard Normal distribution. Assume incoherence µ for that the (ui): u
>
i uj ≤ µ for i 6= j. Let L0 ,

(
50

(1−µ2)

)2
Let L ≥ L0 log(3/δ)2. Then, with probability at least 1− δ,

1

1− ρ2ij
≤ 1

1− (u>i uj)
2

(
1 +

√
L0

L
log(3/δ)

)
.

Proof. From Lemma 7, we have that with probability at least 1− δ,

ρij ≤ u>i uj +
10 log(3/δ)√

L
.

Then,

ρ2ij ≤ (u>i uj)
2 + 2u>i uj

(
10 log(3/δ)√

L

)
+

(
10 log(3/δ)√

L

)2

.

Given the assumptions on L, we have that L ≥ L0 log(3/δ)2 ≥ 50 log(3/δ)2 and thus 10 log(3/δ)√
L

≤ 1
2 :

ρ2ij ≤ (u>i uj)
2 + 2

(
10 log(3/δ)√

L

)
+

1

2

10 log(3/δ)√
L

= (u>i uj)
2 +

25 log(3/δ)√
L

.

Now, we bound 1
1−ρ2ij

,

1

1− ρ2ij
≤ 1

1− (u>i uj)
2 − 25 log(3/δ)√

L

≤ 1

1− (u>i uj)
2

1

1− 25 log(3/δ)

(1−(u>i uj)2)
√
L

≤ 1

1− (u>i uj)
2

1

1− 25 log(3/δ)

(1−µ2)
√
L

≤ 1

1− (u>i uj)
2

1

1− 1
2 log(3/δ)

√
L0

L

.

Again, given assumptions on L, 1
2 log(3/δ)

√
L0

L ≤
1
2 . Using the identity that if x < 1

2 , 1
1−x ≤ 1 + 2x,

1

1− ρ2ij
≤ 1

1− (u>i uj)
2

(
1 + log(3/δ)

√
L0

L

)
.

We are now ready to bound the termwise entries of E.

Lemma 9 (Concentration of Eij). Let w1, . . . , wL be i.i.d. random Gaussian vectors wl ∼ N (0, I), and let

M̂ = {M̂1, . . . , M̂L} be constructed via projection of T̂ along w1, . . . , wL. Assume incoherence µ for that the
(ui): u

>
i uj ≤ µ for i 6= j. Furthermore, let L ≥ L0 log(15/δ)2. Then, with probability at least 1− δ,

|Eij | ≤

(
1

π2
i

+
1

π2
j

)(
p̄>ijrij

1− (u>i uj)
2

+
π̄ij‖rij‖2

1− (u>i uj)
2

(
20 +

√
L0

)
log(15/δ)

√
L

)
,

where p̄ij , |πi|ui + |πj |uj and π̄ij , |πi|+ |πj |.
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Proof. Each term in Equation 13 concentrates sharply about its mean value. We bound each in turn.

First, consider ‖λi‖22/L = 1
L |πi|

2
∑L
l=1(w>l ui)

2. With probability at least 1− δ/5 each, the following hold,

1

L
‖λi‖22 ≥ π2

i ‖ui‖22
(

1− 2 log(5/δ)√
L

)
1

L
‖λj‖22 ≥ π2

j ‖uj‖22
(

1− 2 log(5/δ)√
L

)
.

Thus, using the fact that ‖ui‖22 = 1,

L

(
1

‖λi‖22
+

1

‖λj‖22

)
≤

1
π2
i

+ 1
π2
j

1− 2 log(5/δ)√
L

.

Given our assumption on L, it follows that 2 log(5/δ)√
L

≤ 1
2 . Thus we can use the fact that 1

1−x ≤ 1 + 2x when

x ≤ 1
2 to obtain the following bound:

L

(
1

‖λi‖22
+

1

‖λj‖22

)
≤

(
1

π2
i

+
1

π2
j

)(
1 +

4 log(5/δ)√
L

)
.

Next, we bound 1
L

∑L
l=1 w

>
l uir

>
ijwl and 1

L

∑L
l=1 w

>
l ujr

>
ijwl. From Lemma 13, we have with probability at least

1− δ/5 each,

1

L

L∑
l=1

w>l ujr
>
ijwl ≤ r>ijuj + ‖rij‖2‖uj‖2

(
3

√
log(5/δ)

L

)
1

L

L∑
l=1

w>l uir
>
ijwl ≤ r>ijui + ‖rij‖2‖ui‖2

(
3

√
log(5/δ)

L

)
.

Note that by definition, ‖ui‖2 = 1.

Using Lemma 8, we have that with probability at least 1− δ/5,

1

1− ρ2ij
≤ 1

1− (u>i uj)
2

(
1 +

√
L0

L
log(15/δ)

)
.

Putting it all together, we get that with probability at least 1− δ,

|Eij | ≤
1

1− (u>i uj)
2

(
1 +

√
L0

L
log(15/δ)

)(
1

π2
i

+
1

π2
j

)(
1 +

4 log(5/δ)√
L

)
(
|πi|r>ijui + |πj |r>ijuj + (|πi|+ |πj |)‖rij‖2

(
3

√
log(5/δ)

L

))
.

Let us define p̄ij , |πi|ui + |πj |uj and π̄ij , |πi|+ |πj |:

|Eij | ≤
1

1− (u>i uj)
2

(
1 +

√
L0

L
log(15/δ)

)(
1

π2
i

+
1

π2
j

)(
1 +

4 log(5/δ)√
L

)
(
p̄>ijrij + π̄ij‖rij‖2

(
3

√
log(5/δ)

L

))
.

Given that L ≥ L0 log(15/δ)2, we have that
√

L0

L log(15/δ) ≤ 1 and 4 log(5/δ)√
L

≤ 1, thus(
1 +

√
L0

L
log(15/δ)

)(
1 +

4 log(5/δ)√
L

)
≤ 2× 2

≤ 4.
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Finally, note that |πi|r>ijui + |πj |r>ijuj ≤ (|πi|+ |πj |)‖rij‖2, giving us,

|Eij | ≤

(
1

π2
i

+
1

π2
j

) (
p̄>ijrij

)
1− (u>i uj)

2

+

(
1

π2
i

+
1

π2
j

)
π̄ij‖rij‖2

1− (u>i uj)
2

(√
L0

L
log(15/δ) + 2

4 log(5/δ)√
L

+ 4

(
3

√
log(5/δ)

L

))

≤

(
1

π2
i

+
1

π2
j

)(
p̄>ijrij

1− (u>i uj)
2

+
π̄ij‖rij‖2

1− (u>i uj)
2

(
20 +

√
L0

)
log(15/δ)

√
L

)
.

Finally, we bound the error in estimating uj .

Theorem 8 (Non-orthogonal tensor factorization with random projections). Let w1, . . . , wL be i.i.d. random

Gaussian vectors, wl ∼ N (0, I), and let M̂ = {M̂1, . . . , M̂L} be constructed via projection of T̂ along w1, . . . , wL.

Assume incoherence µ for both (ui) and (vi): u>i uj ≤ µ and v>i vj ≤ µ for i 6= j. Let L0 ,
(

50
1−µ2

)2
. Let

L ≥ L0 log(15d(k − 1)/δ)2. Then, with probability at least 1− δ and for ε small enough,

‖ũj − uj‖2 ≤
8ε

1− µ2

√
‖π‖1πmax

π2
min

‖V >‖22
(

1 + C(δ)
√
d
)
,

where C(δ) , 20+
√
L0√
L

log(15(d(k − 1))/δ).

Proof. From Lemma 15 we have that

‖ũj − uj‖2 ≤ ε

√√√√ d∑
i=1

E2
ij + o(ε),

for j ∈ [k].

Using Lemma 9, we have that with probability at least 1− δ/(d(k − 1)),

|Eij | ≤

(
1

π2
i

+
1

π2
j

)(
p̄>ijrij

1− (u>i uj)
2

+
π̄ij‖rij‖2

1− (u>i uj)
2

(
20 +

√
L0

)
log(15(d(k − 1))/δ)
√
L

)

≤
(

2

π2
min

)(
1

1− µ2

)(
p̄>ijrij + 2|πmin|‖V >‖22

(
20 +

√
L0

)
log(15(d(k − 1))/δ)
√
L

)

≤
(

2

π2
min

)(
1

1− µ2

)(
p̄>ijrij + 2|πmin|‖V >‖22C(δ)

)
,

where we have defined C(δ) , 20+
√
L0√
L

log(15(d(k − 1))/δ) and are using the fact that u>i uj ≤ µ and π̄ij =

|πi|+ |πj | ≤ 2|πmax|.
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Applying a union bound on all the entries of Eij , we arrive at the following bound for all j.

‖ũj − uj‖2 ≤ ε
√∑

i 6=j

E2
ij

≤ 2ε

π2
min(1− µ2)

√√√√√ d∑
i 6=j

p̄>ijrij + 2πmax‖V >‖22C(δ)

2

≤ 4ε

π2
min(1− µ2)

√√√√ d∑
i6=j

(p̄>ijrij)
2 + 2πmax‖V >‖22C(δ)

√√√√ d∑
i6=j

1


≤ 4ε

π2
min(1− µ2)

√√√√ d∑
i6=j

(p̄>ijrij)
2 + 2πmax‖V >‖22C(δ)

√
d

 .

where we use the fact that (a+ b)2 ≤ 2(a2 + b2).

By Lemma 10 we also have,
∑d
j 6=i(p̄

>
ijrij)

2 ≤ 4‖π‖1πmax‖V >‖42. Finally, note that πmax ≤
√
πmax‖π‖1:

‖ũj − uj‖2 ≤
4ε

π2
min(1− µ2)

(√
4‖π‖1πmax‖V >‖22 + 2πmax‖V >‖22C(δ)

√
d
)

≤ 8ε

1− µ2

√
‖π‖1πmax

π2
min

‖V >‖22
(

1 + C(δ)
√
d
)
.

D Proofs of auxiliary lemmas

In this section, we prove some auxiliary results that appear as intermediate steps in the main lemmas above.

Lemma 10 (Bounding p>ijrij). Let pij , πiui− πjuj ∈ Rd and rij , R(vi, vj , I) ∈ Rd, where R is a tensor with

unit operator norm and where (ui) ∈ Rd are unit vectors and (vi) ∈ Rd′ form the columns of the matrix V with
bounded 2 norm. Then,

d∑
i 6=j

(p>ijrij)
2 ≤ 4πmax‖π‖1‖V ‖42.

Proof. Firstly, note that it is trivial to bound the sum as follows,

d∑
i6=j

(p>ijrij)
2 ≤

d∑
i 6=j

‖pij‖22‖rij‖22

≤ 4(d− 1)π2
max‖V ‖42,

using the properties that pij , πiui − πjuj and that R has unit operator norm and thus ‖pij‖2 ≤ 2πmax and
‖rij‖2 = ‖R(vi, vj , I)‖2 ≤ ‖V ‖22.

However, we would like a tighter bound with a lower-order dependence on k. To do so, let us expand pij ,

d∑
i 6=j

(p>ijrij)
2 =

d∑
i6=j

((πiui − πjuj)>rij)2

=

d∑
i6=j

(πiR(vi, vj , ui)− πjR(vi, vj , uj))
2

=

d∑
i 6=j

π2
jR(vi, vj , uj)

2 +

d∑
i6=j

π2
iR(vi, vj , ui)

2 −
d∑
i 6=j

2πiπjR(vi, vj , ui)R(vi, vj , uj).
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Using the assumption that R has unit norm, the latter two terms can be bounded by ‖π‖22‖V ‖42 and 2 πj‖π‖1‖V ‖42
respectively.

We now focus on the first term, π2
j

∑d
i 6=j R(vi, vj , uj)

2. Note that R(vi, vj , uj) = R(I, vj , uj)
>vi = r̃>j vi, where

r̃j , R(I, vj , uj) and ‖r̃j‖2 ≤ ‖V ‖2 by the operator norm condition on R.

d∑
i=1

(r̃>j vi)
2 = ‖V r̃j‖22

≤ ‖V ‖22‖r̃j‖22
= ‖V ‖42

Put together, we get that,

d∑
i 6=j

(p>ijrij)
2 ≤ π2

j ‖V ‖42 + ‖π‖22‖V ‖42 + 2πi‖π‖1‖V ‖42.

Finally, π2
i ≤ πmax‖π‖1 and, by Hölder’s inequality, ‖π‖22 ≤ πmax‖π‖1, giving us,

d∑
i 6=j

(p>ijrij)
2 ≤ 4πmax‖π‖1‖V ‖42.

E Concentration Inequalities

In this section, we present several concentration results that are key to our results. The χ2 tail bounds presented
in Laurent and Massart [34] play a key role and are reproduced below.

Lemma 11 (χ2
k tail inequality). Let q ∼ χ2

k be distributed as a chi-squared variable with k degrees of freedom.
Then, for any t > 0,

P(q − k > 2
√
kt+ 2t) ≤ e−t

P(k − q > 2
√
kt) ≤ e−t.

Alternatively, we have that with probability at least 1− δ,

q ≥ k
(

1− 2 log(1/δ)√
k

)
. (16)

and similarly, with probability at least 1− δ,

q ≤ k

(
1 + 2

√
log(1/δ)

k
+

2 log(1/δ)

k

)
. (17)

Proof. See Laurent and Massart [34, Lemma 1].

Lemma 12 (Gaussian quadratic forms). Let x ∼ N (0, I) ∈ Rd be a random Gaussian vector. If A is symmetric,

x>Ax is distributed as the sum of d independent χ2 variables,
∑d
i=1 λi(A)χ2

1, where λi are the eigenvalues of A.

Proof. Let A =
∑d
i=1 λiuiu

>
i be the eigendecomposition of A. Then, x>Ax =

∑d
i=1 λi‖u>i xi‖2. However, ui>xi

is distributed as independent χ2
1 random variables. Thus, x>Ax =

∑d
i=1 λiχ

2
1.

Lemma 13 (Gaussian products). Let xi ∼ N (0, I) ∈ Rd for i = 1, . . . , L be random Gaussian vectors. Let
L ≥ 4 log(1/δ). Then,
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1.
∑L
i=1(x>i a)2 where a ∈ Rd is distributed as ‖a‖22χ2

L. Consequently, with probability at least 1− δ,

1

L

L∑
i=1

(x>i a)2 ≤ ‖a‖22

(
1 + 2

√
log(1/δ)

L
+

2 log(1/δ)

L

)

≤ ‖a‖22

(
1 + 3

√
log(1/δ)

L

)
1

L

L∑
i=1

(x>i a)2 ≥ ‖a‖22
(

1− 2 log(1/δ)√
L

)
.

2.
∑L
i=1 x

>
i ab

>xi a, b ∈ Rd and a 6= b is sharply concentrated around a>b: with probability at least 1− δ,

1

L

L∑
i=1

x>i ab
>xi ≤ a>b+ ‖a‖2‖b‖2

(
2

√
log(1/δ)

L
+

2 log(1/δ)

L

)

≤ a>b+ ‖a‖2‖b‖2

(
3

√
log(1/δ)

L

)
.

Proof. The first part follows directly from Lemma 12 and the χ2 tail bound, Lemma 11.

For the second part, let A = ab>+ba>

2 . Note that x>i ab
>xi = x>i Axi. Then, by Lemma 12, x>i Axi = λ1χ

2
1+λ2χ

2
1,

where λ1 and λ2 are the eigenvalues of A. Furthermore, because A = ab>+ba>

2 , one of λ1 or λ2 is negative, and
the other is positive. Without loss of generality, let λ1 > 0 > λ2.

Applying the χ2 tail bound, Lemma 11, we get that with probability at least 1− δ,

λ1χ
2
1 ≤ λ1(1 + 2

√
log(2/δ)

L
+ 2

log(2/δ)

L
)

|λ2|χ2
1 ≥ |λ2|(1−

2 log(2/δ)√
L

).

Applying a union bound, we get,

1

L

L∑
i=1

x>i ab
>xi ≤ λ1(1 + 2

√
log(2/δ)

L
+ 2

log(2/δ)

L
) + λ2(1− 2 log(2/δ)√

L
)

≤ (λ1 + λ2) + |λ1|

(
2

√
log(2/δ)

L
+

2 log(2/δ)

L

)
+ |λ2|

2 log(2/δ)√
L

≤ (λ1 + λ2) + (|λ1|+ |λ2|)

(
2

√
log(2/δ)

L
+

2 log(2/δ)

L

)
.

Observe that λ1 + λ2 = tr(A) = a>b. Similarly, |λ1| + |λ2| = ‖A‖∗ = 2( 1
2‖a‖2‖b‖2). Thus, we finally have that

with probability at least 1− δ,

1

L

L∑
i=1

x>i ab
>xi ≤ a>b+ ‖a‖2‖b‖2

(
2

√
log(2/δ)

L
+

2 log(2/δ)

L

)
.

F Perturbation bounds for joint diagonalization

In this section, we present minor extensions to the perturbation bounds of Cardoso [28] and Afsari [24] so that
they apply in the low-rank setting.
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Notation Let Ml = UΛlU
> + εRl for l = 1, 2, . . . , L be a set of d × d matrices to be jointly diagonalized.

Λl ∈ Rk×k is a diagonal matrix, Rl ∈ Rd×d is an arbitrary unit operator norm matrix and ε is a scalar. In the
orthogonal setting, U ∈ Rd×k is orthogonal, while in the non-orthogonal setting U ∈ Rd×k is an arbitrary matrix
with unit operator norm. Let λil , (Λl)i be the i-th factor weight of matrix Ml. Finally, we say that a set of

matrices {M1, · · · ,ML}, Ml =
∑d
i=1 λiluiv

T
i has joint rank k if

∣∣∣{i |∑L
l=1 |λil| > 0}

∣∣∣ = k.

Lemma 14 (Cardoso [28]). Let Ml = UΛlU
> + εRl, l ∈ [L], be matrices with common factors U ∈ Rd×k and

diagonal Λl ∈ Rk×k. Let Ū ∈ Rd×d be a full-rank extension of U with columns u1, u2, . . . , ud and let Ũ ∈ Rd×d
be the orthogonal minimizer of the joint diagonalization objective F (·). Then, for all uj, j ∈ [k], there exists a

column ũj of Ũ such that

‖ũj − uj‖2 ≤ ε

√√√√ d∑
i=1

E2
ij + o(ε), (18)

where E ∈ Rd×k is

Eij ,

∑L
l=1(λil − λjl)u>j Rlui∑L

l=1(λil − λjl)2
(19)

when i 6= j and i ≤ k or j ≤ k. We define Eij = 0 when i = j and λil = 0 when i > k.

Proof. See Cardoso [28, Proposition 1]. Note that in the low rank setting, the entries of Eij (Cardoso [28,

Equation 15]) where i, j > k are not defined, however, these terms only effect the last d− k columns of Ũ . The
bounds for vectors u1, ..., uk only depend on Eij where i ∈ [d] and j ∈ [k], and these are derived in the low-rank
setting in the same way as they are derived in the full-rank proof of Cardoso [28].

We now present the corresponding perturbation bounds in Afsari [24] to the low rank setting.

Lemma 15 (Afsari [24]). Let Ml = UΛlU
> + εRl, l ∈ [L], be matrices with common factors U ∈ Rd×k and

diagonal Λl ∈ Rk×k. Let Ū ∈ Rd×d be a full-rank extension of U with columns u1, u2, . . . , ud and let V̄ = Ū−1,
with rows v1, v2, . . . , vd. Let Ṽ ∈ Rd×d be the minimizer of the joint diagonalization objective F (·) and let
Ũ = Ṽ −1.

Then, for all uj, j ∈ [k], there exists a column ũj of Ũ such that

‖ũj − uj‖2 ≤ ε

√√√√ d∑
i=1

E2
ij + o(ε), (20)

where the entries of E ∈ Rd×k satisfy the equation[
Eij
Eji

]
=

−1

γij(1− ρ2ij)

[
ηij −ρij
−ρij η−1ij

] [
Tij
Tji

]
.

when i 6= j and either i ≤ k or j ≤ k. When i = j, Eij = 0. The matrix T has zero on-diagonal elements, and
is defined as

Tij =
∑
l

v>i Rlvjλjl, for 1 ≤ j 6= i ≤ d

and the other parameters are

γij = ‖λi‖2‖λj‖2, ηij =
‖λi‖2
‖λj‖2

, ρij =
λ>i λj

‖λj‖2‖λi‖2
, (λi)k = λik.

We define λil = 0 when i > k.
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Proof. In Afsari [24, Theorem 3] it is shown that Ṽ = (I + εE)V + o(ε), where Eij is defined for i, j ∈ [d] (Afsari
[24, Equation 36]). Then,

Ũ = Ũ(I + εE)−1 + o(ε)

= Ũ(I − εE) + o(ε).

Note that, once again, in the low rank setting, the entries of Eij when i, j > k are not characterized by Afsari’s

results; however, these terms only effect the last d− k columns of Ũ .

Lemma 16. Let Ml = UΛlU
> + εRl, l ∈ [L], be matrices with common factors U ∈ Rd×k and diagonal

Λl ∈ Rk×k. Let Ū ∈ Rd×d be a full-rank extension of U with columns u1, u2, . . . , ud and let V̄ = Ū−1, with rows
v1, v2, . . . , vd. Let Ṽ ∈ Rd×d be the minimizer of the joint diagonalization objective F (·) and let Ũ = Ṽ −1.

Then, for all uj, j ∈ [k], there exists a column ũj of Ũ such that

‖ũj − uj‖2 ≤ ε

√√√√ d∑
i=1

E2
ij + o(ε), (21)

where the entries of E ∈ Rd×k are bounded by

|Eij | ≤
1

1− ρ2ij

(
1

‖λi‖22
+

1

‖λj‖22

)(∣∣∣∣∣
L∑
l=1

v>i Rlvjλjl

∣∣∣∣∣+

∣∣∣∣∣
L∑
l=1

v>i Rlvjλil

∣∣∣∣∣
)
,

when i 6= j and Eij = 0 when i = j and λil = 0 when i > k. Here λi = (λi1, λi2, ..., λiL) ∈ RL and ρij =
λ>i λj

‖λi‖2‖λj‖2
is the modulus of uniqueness, a measure of how ill-conditioned the problem is.

Proof. From Lemma 15, we have that ∥∥∥∥[EijEji

]∥∥∥∥ ≤ ηij + ηji
γji(1− ρ2ij)

∥∥∥∥[TijTji
]∥∥∥∥ ,

where

γij = ‖λi‖2‖λj‖2, ηij =
‖λi‖2
‖λj‖2

, ρij =
λ>i λj

‖λj‖2‖λi‖2
,

and the matrix T is defined to be zero on the diagonal and for i 6= j defined as

Tij =

L∑
l=1

v>i Rlvjλjl, for 1 ≤ j 6= i ≤ d

Taking ‖ · ‖ to be the l1-norm in the above expression, we have that

|Eij | ≤ |Eij |+ |Eji| ≤
ηij + ηji

γji(1− ρ2ij)
(|Tij |+ |Tji|) .

Since
ηij + ηji
γji

=
‖λi‖22 + ‖λj‖22
‖λi‖22‖λj‖22

=
1

‖λi‖22
+

1

‖λj‖22
and

Tij =

L∑
l=1

v>i Rlvjλjl,

the claim follows.
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