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Abstract 14	
  

Tens of thousands of genotype-phenotype associations have been discovered to date, yet 15	
  

not all of them are easily accessible to scientists. Here, we describe GwasKB, a novel 16	
  

machine reading system that automatically collects and synthesizes genetic associations 17	
  

from the scientific literature into a structured database. GwasKB helps curators by 18	
  

automatically collecting >3,000 previously documented open-access relations (with an 19	
  

estimated recall of 60-80%) as well as >2,000 associations not present in existing human-20	
  

curated repositories (with an estimated precision of 82-89%). Our system represents the 21	
  

largest fully automated GWAS curation effort, and is made possible by a novel paradigm 22	
  

for constructing machine learning systems called data programming. Our results 23	
  

demonstrate both the importance and the feasibility of automating the curation of 24	
  

scientific literature. 25	
  

	
   	
  26	
  



Genome-wide association studies (GWAS) are widely used for measuring the effects of 27	
  

genomic mutations on human traits1. Despite revealing tens of thousands of genotype-28	
  

phenotype associations, not all GWAS results are available to scientists in a structured 29	
  

form amenable to downstream analyses. 30	
  

 31	
  

Multiple efforts are underway to catalogue published GWAS associations2,3, but it is as 32	
  

yet unclear how far we are from a complete GWAS catalogue. Currently, even the most 33	
  

exhaustive databases vary in their scope: hundreds to thousands of variants may be 34	
  

present in one repository, but absent in all others2,3. Variants that are omitted in a 35	
  

database are effectively lost for downstream analyses, and as more studies are published, 36	
  

the number of these “dark variants" is expected to increase. This limits the pace of 37	
  

scientific research and represents an inefficient use of research funding. 38	
  

 39	
  

Here, we describe GwasKB, a machine reading system that automatically collects and 40	
  

synthesizes thousands of genotype-phenotype associations into a structured database.  41	
  

Our system represents the largest GWAS machine curation effort, and is made possible 42	
  

by a novel paradigm for constructing machine learning systems called data programming. 43	
  

When deployed on a set of 589 open-access GWAS publications, GwasKB recovers (at 44	
  

an estimated recall of 60-80%, depending on stringency criteria) >3,000 known 45	
  

associations that were validated in existing GWAS databases, and finds >2,000 46	
  

associations (with an estimated precision of 82-89%) currently absent in existing 47	
  

repositories. The number of these new variants corresponds to about 20% of all open-48	
  

access associations recorded in the most up-to-date human-curated database, GWAS 49	
  

Catalog.  50	
  

 51	
  

We make available to curators an open-source implementation of GwasKB and we also 52	
  

provide an online tool for browsing the associations found by our system1. We anticipate 53	
  

that these associations will be used by scientists in future work. More generally, we 54	
  

demonstrate that modern machine reading algorithms have matured to the point of 55	
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  An online interface to our machine-curated database is available at http://gwaskb.stanford.edu/ 



significantly improving biomedical curation efforts. Finally, our system may form the 56	
  

basis for further efforts to curate Mendelian mutations and other data. 57	
  

 58	
  

Automating Biomedical Literature Curation with GwasKB 59	
  

 60	
  

The results of genome-wide association studies are used to estimate disease risks4,5, to 61	
  

understand the function of specific genomic regions6,7, and to train predictors for the 62	
  

effects of new mutations8. Overall, about 2,500-3,000 studies have been performed to 63	
  

date2,3; they have reported tens of thousands of associations that are manually collected in 64	
  

databases like GWAS Catalog2 and GWAS Central3. 65	
  

 66	
  

However, curating the results of GWAS studies is challenging, as it requires time, 67	
  

domain expertise, and can be prone to errors. As a result, independent human curation 68	
  

efforts are often not consistent, and even the largest GWAS databases are incomplete. 69	
  

 70	
  

The GwasKB Machine Reading System 71	
  

 72	
  

We propose that the process of collecting and synthesizing the findings of GWAS studies 73	
  

can be made significantly more efficient using automated machine reading technologies. 74	
  

We demonstrate this by introducing GwasKB, an automated system that extracts 75	
  

genotype-phenotype relations from the biomedical literature and places them in a 76	
  

structured SQL database (Figure 1).  77	
  

 78	
  

Specifically, GwasKB collects three main pieces of information: genetic variants (as 79	
  

defined by their RSID), their associated phenotypes, and their p-values. We support our 80	
  

findings with evidence from publications (identified by their Pubmed ID), which can take 81	
  

the form of a sentence excerpt or a location in a table. 82	
  

 83	
  

Several challenges arise when curating GWAS studies. For one, there is no universally 84	
  

adopted threshold for the significance of genotype-phenotype associations. GwasKB 85	
  

reports all (rsid, phenotype) associations that are significant at p < 10-5 in at least one 86	
  



experiment in the study (such as in one cohort or one statistical model) and it records all 87	
  

the other p-values relevant to that association. Our threshold of p < 10-5 is the same as the 88	
  

one used in the GWAS Catalog. 89	
  

 90	
  

A second difficulty arises when describing the study phenotype. Phenotypes can be very 91	
  

general (e.g., “heart disease”) or highly specific (e.g., “high systolic blood pressure”), and 92	
  

existing databases often differ in their level detail. GwasKB addresses this issue by 93	
  

providing simple and detailed phenotypes, i.e. a high-level description that applies to 94	
  

every variant in the paper (e.g. “effects of proteins on inflammation”), and, when 95	
  

available, a detailed description for specific variants (e.g., the name of a specific protein).  96	
  

 97	
  

Lastly, a third difficulty is posed by copyright restrictions. With GwasKB, we restrict 98	
  

ourselves to open-access papers, which represent approximately 25% of all the studies 99	
  

that have been published to date. All open-access publications are catalogued by the 100	
  

PubMed Central (PMC) repository and are made publicly available in XML format. 101	
  

GwasKB takes these XML documents as input, although any paper in HTML format may 102	
  

be parsed by our system after minor preprocessing. In the current version, we also discard 103	
  

any associated files that need to be processed through proprietary software. However, the 104	
  

principles of our system extend to all kinds of studies. 105	
  

 106	
  

On The Design of GwasKB 107	
  

 108	
  

GwasKB was designed to extract three key pieces of information: genetic variants, their 109	
  

phenotypes, and their p-values. We have structured GwasKB into a set of five 110	
  

components that extract this information. 111	
  

 112	
  

The first component of GwasKB parses the title and abstract of every paper to identify a 113	
  

simple phenotype that will be associated with all its variants. The second component 114	
  

parses the body of the paper to find tuples of RSIDs and their associated detailed 115	
  

phenotypes.  Often, the detailed phenotype is abbreviated (e.g. BMI) and a third 116	
  

component attempts to resolve these abbreviations (e.g. output “body mass index”). A 117	
  



fourth component extracts p-values in the form of (rsid, p-value) tuples. Finally, the fifth 118	
  

component constructs a single structured database from all these results. 119	
  

 120	
  

Each GwasKB component has three stages: parsing, candidate generation, and 121	
  

classification (Figure 2). Parsing is performed with Snorkel9, a knowledge base 122	
  

construction framework for documents with richly formatted data (data expressed via 123	
  

textual, structural, tabular, and/or visual cues), such as XML documents. Content is first 124	
  

parsed for structure---the XML tree is traversed and converted into a hierarchical data 125	
  

model with text assigned to tables, cells, paragraphs, sentences, etc. Then each sentence 126	
  

or cell is parsed for content using the Stanford CoreNLP pipeline10, which performs 127	
  

sentence tokenization, part-of-speech tagging, and syntactic parsing. In candidate 128	
  

generation, we identify in the text mentions of some target relation (e.g., p-value/rsid 129	
  

pairs). This is done by generating a large set of substrings from the text of the paper, 130	
  

some of which could contain our target relation. Regular expressions or dictionaries are 131	
  

used to identify candidates that may be valid instances of the relation we are looking for 132	
  

(erring on the side of high recall over high precision). Finally, in the classification stage, 133	
  

we determine which of these candidates are actually correct relation mentions using a 134	
  

machine learning classifier. We use a Naive Bayes classifier with a small number of 135	
  

hand-crafted features (between 4 and 12) and we train the model using the recently 136	
  

proposed data-programming paradigm11 137	
  

 138	
  

One of the most significant bottlenecks in developing machine learning-based 139	
  

applications today is the challenge of collecting large sets of hand-labeled training data. 140	
  

Data programming is a newly proposed paradigm for training models using higher-level, 141	
  

less precise supervision to avoid this bottleneck. In this approach, users write a set of 142	
  

labeling functions: black-box functions that label data points, and that can subsume a 143	
  

wide variety of heuristic approaches such as distant supervision12—where an external 144	
  

knowledge base is used to label data points—regular expression patterns, heuristic rules, 145	
  

and more. These labeling functions are assumed to be better than random, but otherwise 146	
  

may have arbitrary accuracies, may overlap, and may conflict. A generative model is 147	
  

used to learn their accuracies and correlations from unlabeled data. The predictions of 148	
  



this model can then be used for classification, or to generate labels for a second, 149	
  

discriminative model. We refer the reader to the appendix and to the full data 150	
  

programming paper11 for more details. 151	
  

 152	
  

Reproducibility 153	
  

 154	
  

In order to make our results fully reproducible, we have released Jupyter notebooks that 155	
  

can be used to run GwasKB, generate the database of associations and recreate most of 156	
  

our figures and tables. The notebooks and the source code of GwasKB are freely 157	
  

available on GitHub at github.com/kuleshov/gwasdb. 158	
  

 159	
  

In addition, we have built an interactive website that enables users to browse associations 160	
  

that have been extracted by GwasKB. Users can search the data by study, phenotype or 161	
  

variant rsid. The entire dataset can also easily be exported in text or SQL format. 162	
  

 163	
  

Machine Reading Helps Automate GWAS Curation 164	
  

 165	
  

We next demonstrate how our system can significantly help humans synthesize and 166	
  

understand findings from the biomedical literature. We deploy GwasKB on all the open-167	
  

access papers listed in the GWAS Catalog database (589 in total), which is the most 168	
  

complete set of such papers that we could access. For evaluation, we also use the GWAS 169	
  

Central database. We use p < 10-5 in at least one cohort or study methodology as our 170	
  

significance cutoff, and assess both the precision and the recall of our system (see Table 171	
  

1). 172	
  

 173	
  

GwasKB Recovers Up To 80% of Curated Open-Access Associations 174	
  

 175	
  

GWAS Central and GWAS Catalog contain respectively 3008 and 4023 accessible 176	
  

associations in our set of 589 studies. These are variants whose RSID is contained in the 177	
  

open-access XML content made available through PubMed Central. We also define 178	
  

mappings between GwasKB phenotypes and phenotypes from GWAS Central and 179	
  



GWAS Catalog (see Methods). These databases often use different levels of precision to 180	
  

describe phenotypes (e.g. “smoking behaviors” vs. “cigarette packs per day”); therefore, 181	
  

we also specify whether our reported phenotype is exact or approximate; in the latter 182	
  

case, it is still useful, but lacks some detail. Table 2 contains examples of relations 183	
  

extracted by GwasKB. 184	
  

 185	
  

Among the set of open-access papers, GwasKB recovered 2487 (82%) relations with 186	
  

approximately correct phenotypes from GWAS Central and 3245 (81%) relations from 187	
  

the GWAS Catalog. It also recovered 1890 (63%) relations with full accuracy from 188	
  

GWAS Central and 2762 (69%) relations from GWAS Catalog. A number of known 189	
  

associations were not correctly recovered because their reported phenotype was incorrect 190	
  

(89 in GWAS Central and 147 in GWAS Catalog). In the remaining cases, we were not 191	
  

able to report the variant itself. Overall, GwasKB recovered 81-82% of accessible 192	
  

associations at a level of quality that will be useful in many applications. 193	
  

 194	
  

Machine Curation Uncovers Many Associations Not Found by Human Curators 195	
  

 196	
  

In total, GwasKB discovered 6422 relations within the 589 input papers, 2959 (46%) of 197	
  

which could not be mapped to GWAS Catalog or GWAS Central. Notably, many of these 198	
  

appeared to be valid.  199	
  

 200	
  

We investigated this further by first manually inspecting a random subset of 100 novel 201	
  

relations (with independent validation from two independent annotators). We found that 202	
  

82 relations fully met the specifications of our system, 11 were incorrect, and 7 were 203	
  

originally identified by a different study (and referenced as background material). Most 204	
  

of the errors can be attributed to incorrect phenotypes. Of the 82 relations matching 205	
  

system specifications, 60 appeared to satisfy the same criteria as GWAS Central or 206	
  

GWAS Catalog relations from the same paper, while 22 were not significant at 10-5 in all 207	
  

cohorts. The latter may have been omitted by human curators for this reason. 208	
  

 209	
  

Novel Variants Found by GwasKB Are Correlated with Genomic Function 210	
  



 211	
  

Linkage Disequilibrium Between Variants from GwasKB and from Existing Databases 212	
  

 213	
  

To validate the novel variants found by our system, we conducted a series of analyses 214	
  

aimed at characterizing the variants’ function. First, we reasoned that detected variants 215	
  

may be in linkage disequilibrium (LD) with known variants (because they originate from 216	
  

the same LD block), or among themselves, thereby inflating our number of truly novel 217	
  

associations.  218	
  

 219	
  

We estimated LD from the Thousand Genomes dataset (Supplementary Methods); Figure 220	
  

3 shows the histogram of r2 distances between each novel variant, and its closest variant 221	
  

in the GWAS Catalog. The distribution of r2 scores is highly multimodal, with large 222	
  

peaks at r2=1, and many more at r2=0. 223	
  

 224	
  

Using a threshold of r2  > 0.5, we filtered our set of new [pmid, rsid, phen, pvalue] 225	
  

associations from 3170 to 1494 by removing variants in LD with known manually 226	
  

curated variants; of the 1676 variants that we eliminated, 765 were not in the 1000 227	
  

Genomes database or their closest previously known variant was not in the database; the 228	
  

remaining 911 SNPs were in LD with known variants. We further reduced this set to 229	
  

1304 associations by eliminating novel variants that were in LD with each other. Thus, 230	
  

although many variants are in LD with known variants, over 40% of our discovered 231	
  

variants do not appear to be linked to variants previously identified in GWAS databases. 232	
  

 233	
  

We argue that it is preferable to curate both novel and known variants, since we do not 234	
  

know which mutation in an LD block is truly causal and the r2 cutoff for defining LD 235	
  

blocks is somewhat arbitrary and may vary. We think that filtering should be performed 236	
  

by the user, depending on their goal; this is also the approach taken by the GWAS 237	
  

Central repository. Moreover, if the authors of a GWAS study report multiple variants in 238	
  

LD, we believe that it is better to report their findings as they are, rather than introducing 239	
  

additional bias through our own filtering. 240	
  

 241	
  



Comparison to Alternative Approaches for Estimating Variant Significance 242	
  

 243	
  

Our second analysis focuses on the biological function of the novel variants. We focus on 244	
  

two large classes of phenotypes: neurodegenerative diseases (ND; 27 traits, including 245	
  

Autism, Alzheimer’s, Parkinson’s, etc.) and autoimmune disorders (AI; 23 traits, 246	
  

including Diabetes, Arthritis, Lupus, etc.); for the analyses below, we consider the subset 247	
  

of variants that are not in LD with any variant in the GWAS Catalog or GWAS Central 248	
  

(283 ND SNPs and 155 AI SNPs).  249	
  

 250	
  

We also collected two sets of genes that were found to be highly expressed in brain cells 251	
  

as well as in blood cells; specifically, we reasoned that SNPs associated to 252	
  

neuropsychiatric and autoimmune diseases should be more highly enriched near genes 253	
  

expressed in brain and immune cells, respectively. Indeed, we found that variants 254	
  

associated with ND diseases (32 ND SNPs in total) occurred significantly more often 255	
  

within 200Kbp of genes with preferential brain expression, while variants associated with 256	
  

AU traits (15 variants in total) were found much more frequently in near genes with 257	
  

preferential blood expression (p < 0.05; see Supplementary Material). 258	
  

 259	
  

We should note however that the vast majority of ND and AU variants were found far 260	
  

from coding regions. To test whether this set of SNPs also make biological sense, we 261	
  

used GREAT13, a tool which annotates the function of variants in intergenic areas of the 262	
  

genome. In particular, GREAT links intergenic regions with Disease Ontology (DO) 263	
  

terms, and outputs terms that are significantly enriched for a particular set of variants. 264	
  

When we applied GREAT to ND SNPs, we found a strong enrichment in regions known 265	
  

to play a role in ND-related phenotypes, such as cognitive disease (p < 10-32), dementia (p 266	
  

< 10-23), and neurodegenerative disease (p < 10-23). Similarly, AI variants were 267	
  

significantly associated with AI-related terms, the most significant of which were disease 268	
  

by infectious agent (p < 10-27), viral infectious disease (p < 10-19), and autoimmune 269	
  

disease (p < 10-17). In fact, the top 20 DO terms for either set of variants were all 270	
  

exclusively associated with the correct family of phenotypes (Supplementary Tables 1,2). 271	
  

Hence, our predicted variants were highly consistent with these external annotations. 272	
  



 273	
  

Examining the Effect Sizes of Novel GwasKB Variants 274	
  

 275	
  

Finally, we analyzed the magnitude with which novel variants affect their predicted 276	
  

phenotypes and other, related traits. Specifically, we used freely available GWAS 277	
  

summary statistics from the LD Hub project14 to assess the distribution of SNP effect 278	
  

sizes across novel variants and compared them to those of random SNPs. We focused on 279	
  

the 11 most frequent traits in our dataset for which summary statistics were available; for 280	
  

each trait, we identified an LD Hub study that provides effect sizes (in the form of beta 281	
  

coefficients or log odds ratios) for that trait. Figure 4 compares the distribution of effect 282	
  

sizes of the novel variants identified by GwasKB to the distribution of effects sizes for all 283	
  

SNPs, again restricting to variants that show no LD with other variants in GWAS 284	
  

databases. Whereas the distribution of random SNPs is centered around zero, as one 285	
  

would expect, novel SNP effect sizes appear to follow a different distribution 286	
  

(Kolmogorov-Smirnov Test; see Figure 4 and Supplementary Figures 1,2) and tend to 287	
  

have significantly higher magnitudes than expected. 288	
  

 289	
  

We also examined the effects of GwasKB variants on phenotypes which are known to be 290	
  

related to their primary, predicted trait. For each pair of diseases, we took the set of 291	
  

variants that GwasKB found to be associated with the first disease, and computed their 292	
  

average absolute effect size using summary statistics from the second disease; in several 293	
  

cases, variants that we determined to be associated with one trait (e.g. Obesity) also had 294	
  

large effect sizes on related traits (e.g. BMI).  295	
  

 296	
  

Specifically, we used a permutation test to compute the probability of observing the 297	
  

absolute average effect size among novel variants within a random set of SNPs; Figure 5 298	
  

shows the resulting matrix of p-values (we only include traits for which we computed at 299	
  

least one small p-value).  In particular, we found that three traits (Obesity, BMI, Type 2 300	
  

Diabetes) shared variants with high effect sizes. These three phenotypes are known to be 301	
  

highly correlated. 302	
  

 303	
  



Interestingly, we also observed an unusual correlation between LDL Cholesterol levels 304	
  

and Alzheimer’s disease. To investigate this further, we repeated the same analysis using 305	
  

variants that have been confirmed by the GWAS Catalog (Supplementary Figures 3-5). 306	
  

The resulting matrix resembles closely that of novel variants and also shows correlation 307	
  

between Alzheimer’s and LDL cholesterol. We also found a novel variant (rs6857) that 308	
  

was previously found to be associated with Alzheimer’s15; our system also correctly 309	
  

determined that is associated with LDL16 at p < 10-7; this association is notably missing 310	
  

from current manually-curated databases. 311	
  

 312	
  

Discussion 313	
  

 314	
  

The importance of curation. If GWAS associations are not recorded in a database, they 315	
  

are effectively missing for many practical purposes, e.g. for training machine learning 316	
  

systems (to predict SNP function). GWAS studies are also costly (often involving 317	
  

genotyping tens of thousands of subjects), and it thus a waste of research funding to not 318	
  

fully record their results. 319	
  

 320	
  

An alternative to curation to ask authors to directly report their findings online. This is 321	
  

already possible within GWAS Central, although in practice not all authors do this, and 322	
  

hence the database is far from complete. In addition, past studies still need to be curated. 323	
  

An ideal solution appears to involve a combination of authors, machines, and curators. 324	
  

 325	
  

Hand-curation is a difficult task. Why do manual curation efforts miss certain 326	
  

associations? Curating papers is often a tedious task involving browsing through highly 327	
  

technical material in search of short snippets of text. Humans are generally not well-328	
  

suited to this kind of work: they may accidentally skip table rows, or become tired and 329	
  

skip a paragraph. Curation also requires understanding advanced technical concepts such 330	
  

as linkage disequilibrium or multiple hypothesis testing. This makes the task unsuitable 331	
  

for crowdsourcing approaches. 332	
  

 333	
  



Machines may outperform humans. Computers, on the other hand, don't suffer from the 334	
  

aforementioned limitations: they excel at repetitive work and only need to be 335	
  

programmed by experts once. Crucially, even though machines make errors, these errors 336	
  

are systematic, not random: one may follow an iterative process of fixing these errors and 337	
  

redeploying the system, until a sufficient level of accuracy is reached. Redeploying our 338	
  

system takes on the order of hours, while asking humans to return and correct their errors 339	
  

would take at least months. 340	
  

 341	
  

Of course, humans also have many advantages over machines. Indeed, the sets of 342	
  

GwasKB and human-curated associations were quite distinct, with thousands of relations 343	
  

present in one set, but not the other. The most accurate and complete GWAS database is 344	
  

in fact a combination of both sources. In the future, we see curation as a collaboration 345	
  

between humans and machines. 346	
  

 347	
  

Biomedical information extraction. Extracting structured relations from unstructured text 348	
  

is subject of the field of information extraction17 (IE).  Information extraction is widely 349	
  

used in diverse domains such as news18, finance19, geology20, and in the biomedical 350	
  

domain. In the biomedical setting, IE systems have been used to parse electronic medical 351	
  

records21, identify drug-drug interactions22, and associate genotypes with drug response23. 352	
  

A considerable amount of effort has gone into uncovering gene/disease associations from 353	
  

biomedical literature24. Our approach, however, takes a different approach, as it attempts 354	
  

to identify the effects of individual mutations. Recently, Jain et al. applied information 355	
  

extraction to the GWAS domain25; their work focused on creating extractors for two 356	
  

specific relations: paper phenotypes and subject ethnicities; these extractors achieved an 357	
  

87% precision-at-2 and a 83% F1-score on the two tasks, respectively. In contrast, our 358	
  

works introduces an end-to-end system that extracts full (phenotype, rsid, pvalue) 359	
  

relations comparable to ones found in hand-curated databases. 360	
  

 361	
  

Applications beyond GWAS studies. Dozens of literature curation efforts are currently 362	
  

underway in cancer genomics, pharmacogenomics, and many other fields. Our findings 363	
  

hint at the possibility of using machine curation there as well. 364	
  



 365	
  

The GWAS domain is in many ways easier than others since variants have standardized 366	
  

identifiers and a lot of information is structured in tables. Nonetheless, it allows us to 367	
  

demonstrate the importance of machine curation and to develop a core system that can be 368	
  

generalized to other domains. Within the GWAS setting, our system can be further 369	
  

improved by extracting additional relations (e.g. risk alleles, odds ratios). 370	
  

 371	
  

Conclusion 372	
  

 373	
  

In summary, we have introduced in this work a new machine reading system for 374	
  

extracting structured databases from publications describing genome-wide association 375	
  

studies, and we have used it to both recover many known relations, as well as a number 376	
  

of associations that were not present in any existing repository.  377	
  

 378	
  

Our results demonstrate how machine reading algorithms may help human curators 379	
  

synthesize the large amount of knowledge contained in the biomedical literature. This 380	
  

knowledge can be made widely accessible using new systems that combine the efforts of 381	
  

both human and machines, thus accelerating the pace of discovery in science. 382	
  

 383	
  

  384	
  



Online Methods 385	
  

 386	
  

Detailed Description of GwasKB 387	
  

 388	
  

GwasKB is implemented in Python on top of the Snorkel information extraction 389	
  

framework11. Snorkel provides utilities for parsing XML documents and training machine 390	
  

learning classifiers. GwasKB extends the parsers/classifiers in Snorkel and applies them 391	
  

to the GWAS extraction task. Below, we provide additional details on the various 392	
  

components of GwasKB 393	
  

 394	
  

Identifying simple phenotypes. We parse paper titles and abstracts and generate 395	
  

candidates from the EFO, Snomed and Mesh ontologies. We use 11 labeling functions 396	
  

(LFs), which include the following: is the mention in the title; is the mention less than 5 397	
  

characters; does the mention contain nouns; is the mention in the first half of the 398	
  

sentence, etc. We include the full list of labeling functions in our open-source GitHub 399	
  

repository. The high-level phenotype is the set of three highest scoring mentions 400	
  

exceeding a user-specified score threshold or the single highest mention if none exceeds 401	
  

the threshold; this enables us to handle multiple valid phenotypes. 402	
  

 403	
  

Identifying precise phenotypes. We only parse tables and generate candidates from cells 404	
  

whose header contains the words ”phenotype", “trait", or “outcome". Candidate p-values 405	
  

are generated by matching a regular expression; candidate relations consist of 406	
  

horizontally aligned phenotype and p-value candidates. We use three labeling functions: 407	
  

is the candidate mostly a number; is the header of the cell (indicating it's in a phenotype 408	
  

column) very long; does the mention contain words referring to an rsid. The module is 409	
  

described in more detail on GitHub. 410	
  

 411	
  

Resolving Acronyms. We resolve acronyms by looking at the entire paper, including 412	
  

tables and the main natural language text in the body of the paper. We extract candidates 413	
  

from aligned pairs table cells, where one row is labeled ”phenotype”, “trait”, or 414	
  

“description”, while the other is labeled “abbreviation”, “acronym”, or “phenotype”. We 415	
  



generate candidates from the main text using a regular expression. Our labeling functions 416	
  

include the following: is the candidate all in caps; does the candidate match to the 417	
  

Snomed dictionary; does the acronym candidate consist of the letters of each word of the 418	
  

phenotype candidate; is one a prefix of the other; etc. The module for resolving 419	
  

abbreviations is also described on GitHub. 420	
  

 421	
  

Identifying p-values. We again generate candidates from tables; SNP candidates are 422	
  

generated using a regular expression; p-value candidates are ones that match one of three 423	
  

regular expressions (see GitHub); candidate relations consist of horizontally aligned SNP 424	
  

and p-value candidates (with at most one rsid per row). These candidates were accurate 425	
  

and we report them all. 426	
  

 427	
  

Mapping Phenotypes Across Databases 428	
  

 429	
  

In order to compare against GWAS Central and GWAS Catalog, we define mappings 430	
  

between GwasKB phenotypes and ones used in these two repositories. These mappings 431	
  

are tables with about 800 entries each that also indicate whether the mapping is fully or 432	
  

partially correct (e.g. “smoking behaviors" vs “packs per day"). We define the latter as 433	
  

conceptually containing the precise label while also being not so broad as to be useless. 434	
  

See also our earlier discussion on high- and low-level phenotypes. To confirm the 435	
  

validity of our mappings, we asked an independent annotator to label 100 random table 436	
  

entries; their concordance with our labels was 95%. These mappings are available in our 437	
  

GitHub repository. 438	
  

 439	
  

Understanding The Errors Of GwasKB Components 440	
  

 441	
  

Simple phenotype extraction. Errors at this stage mostly occur when the true phenotypes 442	
  

are not found in our candidate dictionaries (e.g. “genome-wide association study in 443	
  

bipolar patients"; we can only generate the candidate “bipolar disorder"). The second 444	
  

major source of error are phenotypes mentioned only in passing (e.g. “high body fat is a 445	
  



risk for diabetes" when diabetes is not the phenotype whose association is being 446	
  

reported).  447	
  

 448	
  

To estimate the precision of this module, we first restrict ourselves to (paper, rsid, 449	
  

phenotype) relations produced by GwasKB that are also confirmed by an existing 450	
  

database, in the sense that the variant specified by the rsid occurs in some relation 451	
  

associated with the paper (but not necessarily one with the same phenotype). Then, we 452	
  

look at the fraction of these relations whose phenotype is also correct (at the approximate 453	
  

level). This gives precisions of 97% in the GWAS Catalog and 96% in GWAS Central. 454	
  

 455	
  

Detailed phenotype extraction. Most errors occur because we do not correctly resolve 456	
  

acronyms or because low-level phenotypes are not in tables (but rather only in text). 457	
  

Acronyms are not resolved most often because the shortened symbol is not clearly related 458	
  

to the full expression (e.g. CYS5 for Cysteine proteinase inhibitor 5 precursor), and they 459	
  

are presented in tables with confusing formatting. We estimate precision in the same way 460	
  

as for simple phenotypes, but this time, we require that phenotype agree fully. Precision 461	
  

was 73% in GWAS Central, the database with the most precise phenotypes. In GWAS 462	
  

Central, it was 82%. 463	
  

 464	
  

p-values. To evaluate p-value extraction accuracy, we labeled by hand 100 random 465	
  

relations and found that our rule-based extraction procedure had a precision of 98%. 466	
  

Errors occurred when p-values referred to other entities in the row, such as haplotypes. 467	
  

Note also that oftentimes, variants and their p-values are only provided in text but not in 468	
  

tables. This was the primary reason why we failed to report the rsid's of 584 (15%) 469	
  

GWAS Catalog and 432 (14%) GWAS Central associations. 470	
  

 471	
  

Error Analysis Over 100 New Relations 472	
  

 473	
  

Of the incorrect relations, 7 were due to incorrect phenotype labels (but the underlying 474	
  

SNP was significant) and 4 were due to table parsing errors (the p-value was extracted 475	
  

incorrectly). Of the 22 variants that were not significant in all cohorts, 18 could be 476	
  



identified as such via extracted tags and relations. We also determined that 60 relations 477	
  

were correct because they were either described as “significant" in the paper text (in 478	
  

addition to having p < 10-5 in all cohorts) or they had essentially the same or higher level 479	
  

of significance as SNPs that were included in GWAS Catalog or GWAS Central. 480	
  

 481	
  

To confirm the accuracy of our analysis, we asked two independent annotators with 482	
  

expertise in genomics to label a random subset of 50 associations out of the ones 483	
  

analyzed above. For each annotator, respectively 47 and 48 out of 50 labels were 484	
  

consistent with ours. We publish our 100 samples and their annotation on GitHub; for 485	
  

each example, we add a justification for our label. 486	
  

 487	
  

Estimating the Precision of GwasKB 488	
  

 489	
  

We estimate our overall precision at 92%: we consider the 3463 relations confirmed by 490	
  

existing databases as correct, and estimate the error rate on the other relations to be 18% 491	
  

(incorrect and repeat relations). 492	
  

  493	
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 562	
  
Figure 1: The GwasKB machine reading system. GwasKB takes as input a set of 563	
  
biomedical publications retrieved from PubMed Central (left) and automatically creates a 564	
  
structured database of GWAS associations described in these publications (right). For 565	
  
each association, the system identifies a genetic variant (purple), a high-level phenotype 566	
  
(pertaining to all variants in the publication), a detailed low-level phenotype (specific to 567	
  
individual variants, if available; red), and a p-value (orange). Acronyms are also resolved 568	
  
(red). 569	
  

  570	
  



 571	
  

Figure 2: General structure of a GwasKB module. The system contains separate modules 572	
  
for extracting variants, phenotypes, p-values, and for resolving acronyms. Each module 573	
  
consists of three stages. At the parsing stage, we process papers using the Stanford 574	
  
CoreNLP pipeline, performing full syntactic parsing. Next, given a target relation (e.g., 575	
  
variant-phenotype), we generate a large set of candidates, some of which could be correct 576	
  
instances of the target object on relation. Then, at the classification stage, we determine 577	
  
which candidates are correct using a machine learning classifier. 578	
  

  579	
  



 580	
  

Figure 3: Linkage disequilibrium between GwasKB variants not present in existing 581	
  
human curated databases and variants from the GWAS Catalog. We use the 1000 582	
  
Genomes dataset to estimate the r2 metric between pairs of variants, and report distances 583	
  
from each GwasKB variant to the most correlated GWAS Catalog SNP reported in the 584	
  
same paper. The distribution of r2 scores is highly multimodal; many GwasKB variants 585	
  
are uncorrelated (r2=0) with GWAS Catalog SNPs. 586	
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 588	
  

 589	
  

Figure 4: Visualizing the effect sizes of variants identified by GwasKB. Top: We 590	
  
compare the distribution of effect sizes (absolute values of beta coefficients or log odds 591	
  
ratios; data from LD Hub) of variants identified by GwasKB (blue) to that of all variants 592	
  
(green) for multiple traits. Blue variant effect sizes cluster away from zero and follow a 593	
  
different distribution (Kolmogorov-Smirnov test). Bottom: We subsample 1000 random 594	
  
sets of variants with the same number of elements as the set of GwasKB SNPs for a given 595	
  
disease; the average effect size of GwasKB variants (red) is higher than that of the 596	
  
random subsets (blue). In all settings, we only look at novel GwasKB variants not present 597	
  
in existing human-curated repositories. 598	
  



 599	
  

Figure 5: Visualizing the effects of variants identified by GwasKB for pairs of related 600	
  
phenotypes. For each pair of phenotypes, we compute the average absolute effect size of 601	
  
GwasKB SNPs from the first phenotype (left) using summary statistics from the second 602	
  
phenotype (right; summary statistics were obtained from the LD hub). The heat map 603	
  
displays the log-probability of observing an equal or greater effect size by sampling 604	
  
random variants (we thus compute p-values using a one-sided permutation test). Variants 605	
  
predicted by GwasKB to be associated with Obesity, BMI, or Type 2 Diabetes also have 606	
  
significant effects sizes for other, related diseases within this trio. In this analysis, we 607	
  
only look at novel GwasKB variants not present in existing human-curated repositories. 608	
  

 609	
  

  610	
  



Database Statistics over open-access papers 
Papers Associations Unique Associations 

GWAS Catalog 589 8,384 >2,026 
GWAS Central 516 5,914 >364 
GwasKB (ours) 589 6,231 >2,777 
 611	
  
Table 1: Numbers of associations contained in different GWAS databases. Unique 612	
  
associations are contained in one database and in none of the others. Human curated 613	
  
databases (GWAS Catalog and GWAS Central) significantly differ in their scope. Our 614	
  
machine-curated repository (GwasKB) automatically recovers a large fraction of known 615	
  
results and also finds a comparable number of unique associations. 616	
  

  617	
  



	
  	
   Source  Simple phenotype  Precise phenotype  p-value  

Study  Genome-wide pharmacogenomic study of metabolic side effects to antipsychotic drugs.  

rs17661538  
 

GwasKB  Antipsychotic drugs / Metabolic side 
effects  

Clozapine - 
Triglycerides  1.00E-06 

GwasCat  Clozapine-induced change in triglycerides  1.00E-06 

Study  Genome-wide meta-analysis identifies seven loci associated with platelet aggregation in 
response to agonists.  

rs12566888  

GwasKB Platelet aggregation  -  5.00E-19 

GwasCat  Platelet aggregation, epinephrine  5.00E-19 

Study  A genome-wide association study of the Protein C anticoagulant pathway.  

rs13130255  
 

GwasKB Protein C  funcPS  3.00E-06 

GwasCat  Anticoagulant levels (funcPS)  3.00E-06 

Study  
Genome-wide association study of CSF levels of 59 Alzheimer’s disease candidate 
proteins: significant associations with proteins involved in amyloid processing and 
inflammation.  

rs948399 GwasKB Proteins Involved / Inflammation / 
Alzheimer’s Disease  metalloproteinase-3 1.00E-07 

 618	
  

Table 2: Examples of associations identified by GwasKB. Associations can be classified 619	
  
as correct (rs17661538), partially correct (rs12566888; the precise phenotype is missing) 620	
  
and incorrect (rs13130255). We also compare these associations to their corresponding 621	
  
entries in the GWAS Catalog. The last entry (rs948399) is an example of a previously 622	
  
undocumented association discovered by our system. 623	
  

  624	
  



Contributions 625	
  
 626	
  
V.K. conceived the study. B.H., V.K., and A.R. developed modules for the Snorkel 627	
  
system. V.K. developed the GwasKB system. V.K., J.D., and C.V. performed 628	
  
computational analysis. J.D. developed the web interface. V.K. and Y.L. wrote the paper. 629	
  
Y.L., C.R., S.B., and M.S. supervised the study. 630	
  
 631	
  
Competing interests 632	
  
 633	
  
None declared. 634	
  
 635	
  


