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Abstract. Simultaneous matrix diagonalization is used as a subroutine
in many machine learning problems, including blind source separation
and paramater estimation in latent variable models. Here, we extend al-
gorithms for performing joint diagonalization to low-rank and asymmet-
ric matrices, and we also provide extensions to the perturbation analysis
of these methods. Our results allow joint diagonalization to be applied
in several new settings.

1 Introduction

Consider a set of L ě 2 matrices M “ tMlu
L
l“1 of the form

Ml “ UΛlU
T , (1)

where U P Rdˆk are factors common to all the matrices, and the diagonal Λl P
Rkˆk contain weights that are specific to each matrix Ml.

Simultaneous matrix diagonalization consists in determining the unknown
factors and weights from the matrices Ml. Unlike in traditional single-matrix di-
agonalization, the U may be non-orthogonal (such factors are identifiable when
L ě 2; see Afsari [2]), and when the U are orthogonal, simultaneously diagonal-
izing the entire set M if often more robust to noise that diagonalizing a single
Ml.

Joint diagonalization arises in several machine learning settings, including
blind-source separation [12] and latent variable estimation via tensor factor-
ization [7]. However, our understanding of algorithms for jointly diagonalizing
matrices is far from complete: even the low-rank (k ă d) and the asymmetric
settings have not been considered in the literature.

Here, we show how to extend existing algorithms — notably the Jacobi [5]
and QRJ1D [1] methods — to these two settings. Our extensions enable one
to apply simultaneous diagonalization to several new problems. For example, it
was recently shown that tensor factorization can be reduced joint matrix diago-
nalization; our algorithms make this reduction also applicable to low-rank and
asymmetric tensors. This in turn leads to accuracy improvements on problems
in community detection and for topic modeling.



Finally, we also extend existing perturbation analyses for noisy matrices of
the form

Ml “ UΛlU
T ` εRl (2)

for some ε ą 0 and some matrix Rl having unit norm. First, we give a simple
generalization of existing bounds to the low-rank and asymmetric settings. These
bounds can be used to derive formal guarantees for methods that use simulta-
neous diagonalization as a subroutine; we again provide tensor factorization as
an example. However, current bounds only hold for the true joint diagonalizer of
the set M, and there are no guarantees on whether it is attained by joint diago-
nalization algorithms; this limits the usefulness of theoretical analyses based on
these lemmas. In the last section of the paper, we address this shortcoming by
showing that for sufficiently small noise, the global minimizer will be attained,
as long as we initialize the diagonalization subroutine with factors obtained by
diagonalizing a single matrix.

2 Background

2.1 Notation

We establish notation for the classical symmetric simultaneous diagonalization
case; we will extend it to the asymmetric case in a subsequent section.

We are given as input a set of matrices M1, . . . ,ML P Rdˆd where each Ml

can be expressed as

Ml “ UΛlU
T ` εRl. (3)

The diagonal weight matrix Λl P <dˆd and the noise Rl (satisfying ||Rl|| ď 1)
are individual to each Ml, but the non-singular transform U P Rdˆd is common
to all the matrices.

Our goal is to find an invertible transform V ´1 such that each V ´1MlV
´J is

nearly diagonal. This problem admits a unique solution when there are at least
two matrices [2]. There are a number of objective functions that are designed for
determining joint diagonalizers [5,9,1], but in this paper, we focus on a popular
one that penalizes off-diagonal terms:

F pV q “
L
ÿ

l“1

offpV ´1MlV
´Jq “

L
ÿ

l“1

ÿ

i‰j

pV ´1MlV
´Jq2ij . (4)

An important setting of this problem, which we refer to as the orthogonal case,
is when U is orthogonal, in which case we will also constrain the optimization
to be orthogonal V ´1 “ V J.



2.2 Previous work

There exist several algorithms for optimizing F pV q. In this paper, we will use
the Jacobi method [3,5] for the orthogonal case and the QRJ1D algorithm [1] for
the non-orthogonal case. Both techniques are based on same idea of iteratively
constructing V ´1 via a product of simple matrices V ´1 “ BT ¨ ¨ ¨B2B1, where
at each iteration t “ 1, . . . , T , we choose Bt to minimize JpV q. Typically, this
can be done in closed form.

The Jacobi algorithm for the orthogonal case is a simple adaptation of the
Jacobi method for diagonalizing a single matrix. Each Bt is chosen to be a Givens
rotation [3] defined by two of the d axes i ă j P rds: Bt “ cos θp∆ii ` ∆jjq `

sin θp∆ij ´ ∆jiq for some angle θ, with ∆ij being a matrix which is 1 in the
pi, jq-th entry and 0 elsewhere. We sweep over all i ă j, compute the best angle
θ in closed form using the formula proposed by [5] to obtain Bt, and then update
each Ml by BJt MlBt. The above can be done in Opd3Lq time per sweep.

Data: symmetric matrices pMlq
L
l“1

Let U “ I;
while objective is decreasing do

for i “ 1, 2, ..., d do
for j “ i` 1, i` 2, ..., d do

Let θ̂ be the minimizer of F pGijpθqq;

U Ð UGijpθ̂q;
for l “ 1, 2, ..., L do

Ml Ð Gijpθ̂q
TMlGijpθ̂q;

end

end

end

end
Algorithm 1: The Jacobi algorithm for simultaneous diagonalization

For the non-orthogonal case, the QRJ1D algorithm is similar, except that Bt
is chosen to be either a lower or upper unit triangular matrix (Bt “ I ` a∆ij

for some a and i ‰ j). The optimal value of a that minimizes JpV q can also be
computed in closed form (see [1] for details). The running time per iteration is
the same as before.

Most popular algorithms both in the orthogonal [3] and the non-orthogonal
setting [12,10] are guaranteed to converge locally. The formal question of global
convergence is currently open even for methods that are widely used [8,5]. In
practice, however, the Jacobi-style methods we adopt are well-known to behave
as if they global convergence [3,5,8].

In the asymmetric setting, variants of the Jacobi algorithm have been pro-
posed for orthogonal factors [6]. These variants essentially diagonalize the set of
matrices M 1

j “MT
j Mj . Notice that when Mj “ UΛV T , we have M 1

j “ V Λ2V T ,
and so the assymetric problem can be reduced to one with symmetric M 1

j . In the



Data: symmetric matrices pMlq
L
l“1

Let U “ I;
while objective is decreasing do

for i “ 1, 2, ..., d do
for j “ i` 1, i` 2, ..., d do

Let θ̂ be the minimizer of F pGijpθqq;

U Ð UGijpθ̂q;
for l “ 1, 2, ..., L do

Ml Ð Gijpθ̂q
TMlGijpθ̂q;

end

end

end
for i “ 1, 2, ..., d do

for j “ i` 1, i` 2, ..., d do
Let â be the minimizer of F p∆ijpaqq;
U Ð U∆ijpâq;
for l “ 1, 2, ..., L do

Ml Ð ∆ijpâq
TMl∆ijpâq;

end

end

end

end
Algorithm 2: The QRJ1D algorithm for simultaneous non-orthogonal diago-
nalization



low-rank setting, an extension of the Jacobi algorithm has been proposed for a
single matrix [11]. This extension implictely sorts the entries of the matrix and
performs only Opdk2q Givens rotations per sweep. However, the L ě 2 setting
has not been considered in the literature. Finally, for non-orthogonal matrices,
neither the low-rank and asymmetric case has been worked out to the best of
our knowledge.

3 Low-rank matrices

In this section, we provide extensions of simultaneous algorithms to low-rank
matrices. We start with orthogonal factors; in this setting, we take inspiration
from the sorted Jacobi method for a single low-rank matrix and propose a sorted
Jacobi method for multiple matrices. Then, we show how to generalize the same
sorting idea to the QRJ1D algorithm, which leads to a low-rank algorithm for
the non-orthogonal setting as well.

3.1 Orthogonal setting

First, suppose that we applied the Jacobi algorithm to a single matrix M whose
eigenvalues λ1 ě λ2 ě ... ě λk (corresponding to the diagonal of the matrix Λ)
were sorted. In that case, we would only need Jacobi to zero out the entires of
M associated with the first k rows or the first k columns. In other words, we
would have to transform the matrix into the following form:

¨

˚

˚

˝

λ1 0 0 0
0 λ2 0 0
0 0 ˆ ˆ

0 0 ˆ ˆ

˛

‹

‹

‚

The two left-most columns of the diagonalizing matrix will correspond to the
eigenvectors associated with λ1 and λ2 while the other two columns will contain
arbitrary numbers. Also, since Givens rotations are essentially independent of
each other, it takes only kd Givens rotations per sweep to turn the input matrix
into the above form.

If the eigenvalues of the input matrix M are not sorted, then we can sort
the diagonal of M after every sweep of Jacobi (while still performing only kd
Givens rotations per sweep). When the algorithm terminates, all the k non-zero
eigenvalues will find themselves in the top k ˆ k corner; if that wasn’t the case,
then they would have been swapped out with another entry from outside that
corner.

When there is more than one matrix, the components j over which the rank
is positive are ones for which

řL
l“1 |pΛlqjj | ą 0. This suggests a natural extension

of the above idea: choose Givens rotations in a way as to push mass on the sum
of the absolute values of the matrix diagonals towards the upper left corner. This
idea is implemented in Algorithm 3



The sorting opereation corresponds to a permutation of the columns of the
Mj , which does not change the value of the objective function. Thus the sorted
Jacobi algorithm also decreases the objective function value at every iteration,
which ensures its convergence to a low-rank diagonalizer. However, unlike in the
single-matrix setting, we do not provide formal guarantees that the resulting
diagonalizer is optimal; even in the full-rank setting convergence properties of
the simultaneous Jacobi method remains an open problem. However, in the next
section we demonstrate empiracally that just as in the full-rank setting, our
low-rank extension appears to converge for any matrix.

Data: symmetric matrices pMlq
L
l“1

Let U “ I;
while objective is decreasing do

for i “ 1, 2, ..., k do
for j “ i` 1, i` 2, ..., d do

Let θ̂ be the minimizer of F pGijpθqq;

U Ð UGijpθ̂q;
for l “ 1, 2, ..., L do

Ml Ð Gijpθ̂q
TMlGijpθ̂q;

end

if
řL

l“1 |pΛlqjj | ą
řL

l“1 |pΛlqjj | then
Flip columns i and j in U and the Ml;

end

end

end

end
Algorithm 3: The low-rank Jacobi algorithm for simultaneous diagonalization

3.2 Non-orthogonal setting

The QRJ1D algorithm has a very similar structure to Jacobi: over the course of
a sweep, the matrices Mj are first multiplied by Givens rotation, and then by
lower triangular matrices. In each case, a rotation only affects two columns and
two rows of Mj .

We can similarly sort the diagonal entries of the matrices and zero-out only
the top k ˆ k square of the Mj . This leads to Algorithm 4.

4 Asymmetric matrices

Suppose now that we have a set of L ě 2 matrices M “ tMlu
L
l“1 of the form

Ml “ UΛlV
T , (5)



Data: symmetric matrices pMlq
L
l“1

Let U “ I;
while objective is decreasing do

for i “ 1, 2, ..., k do
for j “ i` 1, i` 2, ..., d do

Let θ̂ be the minimizer of F pGijpθqq;

U Ð UGijpθ̂q;
for l “ 1, 2, ..., L do

Ml Ð Gijpθ̂q
TMlGijpθ̂q;

end

if
řL

l“1 |pΛlqjj | ą
řL

l“1 |pΛlqjj | then
Flip columns i and j in U and the Ml;

end

end

end
for i “ 1, 2, ..., k do

for j “ i` 1, i` 2, ..., d do
Let â be the minimizer of F p∆ijpaqq;
U Ð U∆ijpâq;
for l “ 1, 2, ..., L do

Ml Ð ∆ijpâq
TMl∆ijpâq;

end

if
řL

l“1 |pΛlqjj | ą
řL

l“1 |pΛlqjj | then
Flip columns i and j in U and the Ml;

end

end

end

end
Algorithm 4: The QRJ1D algorithm for simultaneous non-orthogonal diago-
nalization

where U P Rd1ˆk and V P Rd2ˆk are sets of common factors, possibly non-
orthogonal.

When the U and V are orthogonal, there is a well-known procedure that
reduces this problem to the symmetric case by instead diagonalizing the matrices
M 1
l “ MT

l ML “ V Λ2V T . Unfortunately, this reduction does not work for non-
orthogonal matrices; here, we propose another reduction that works in both
orthogonal and non-orthogonal cases.

For each Ml, define another matrix Nl “
´

0 MJ
l

Ml 0

¯

and observe that

„

0 MJ
l

Ml 0



“

„

V V
U ´U

 „

Λl 0
0 ´Λl

 „

V V
U ´U

J

.

The pNlq are symmetric matrices with common (in general, non-orthogonal)
factors. Therefore, they can be jointly diagonalized and from their components,
we can recover the components of the pMlq.



Using the above low-rank algorithms, it is possible to determine the U, V
factors in Opd1d

2
2q time (assuming d2 ě d1). This is worse than the Opd21d2q

time it takes to determine the SVD of a single matrix. It remains to be seen if
non-orthogonal joint diagonalization admits algorithms are as fast as ones for
the ordinary SVD.

5 Experiments

5.1 Full-rank matrices

0 0.5 1 1.5

x 10
−10

0

10

20

30

40

50

60

70

Objective function value

epsilon = 0.0

0.04 0.045 0.05
0

10

20

30

40

50

60

70
epsilon = 1e−4

Objective function value
0.36 0.38 0.4 0.42 0.44 0.46
0

10

20

30

40

50

60
epsilon = 1e−3

Objective function value

Fig. 1: Histogram of objective values attained by the Jacobi simultaneous di-
agonalization algorithm for 1000 random sets of jointly diagonalizable matrices
initialized with various amounts of noise.

To assess the convergence properties of the Jacobi method, we ran the al-
gorithm 1000 times on different sets of L random matrices (L “ d “ k “ 15)
corrupted with varying amounts of noise (ε “ 0, 1e´ 4, 1e´ 3). At each run, we
measured the objective value function (the Frobenius norm of the off-diagonal
elements), and plotted the resulting histogram (Figure 1).

Overall, we observe that the objective values for a Gaussian distribution for
the three settings ε “ 0, 1e ´ 4, 1e ´ 3. All data points are concentrated in an
interval that depend either on the convergence threshold (1e´ 12) in the ε “ 0
case or on the noise level (when ε “ 1e ´ 3, 1e ´ 4). Most interestingly, when
ε “ 0, the mean of the observations is around 1e ´ 10 (which corresponds to
the precision of 1e ´ 12 multiplied by the „ 200 entries in the matrices), and
ε ą 0, the mean depends on the noise level. Quite strikingly, multiplying the
noise by ten produces essentially the same histogram within the same bounds,
except that it has been translated from between 0.035 and 0.045 to between 0.35
and 0.45.

This observation strongly suggests that the Jacobi algorithm attains a glob-
ally optimal solutions even at high noise levels.



5.2 Low-rank matrices

5.3 Asymmetric matrices

6 Extension of perturbation analyses

We conclude our discussion with some perturbation results for noisy matrices of
the form

Ml “ UΛlU
T ` εRl (6)

for some ε ą 0 and some matrix Rl having unit norm.
A perturbation analyses has been carried out for matrices of this form in

both orthogonal and non-orthogonal settings. Our first two lemmas state that
these analyses carry over to the low-rank case as well. The fact that they also
carry over to the asymmetric case follows trivially from our reduction.

Lemma 1 ([4]). Let Ml “ UΛlU
J ` εRl, l P rLs, be matrices with common

factors U P Rdˆk and diagonal Λl P Rkˆk. Let Ū P <dˆd be a full-rank extension
of U with columns u1, u2, . . . , ud and let Ũ P <dˆd be the orthogonal minimizer
of the joint diagonalization objective F p¨q. Then, for all uj, j P rks, there exists

a column ũj of Ũ such that

}ũj ´ uj}2 ď ε

g

f

f

e

d
ÿ

i“1

E2
ij ` opεq, (7)

where E P Rdˆk is

Eij “

řL
l“1pλil ´ λjlqu

J
j Rlui

řL
l“1pλil ´ λjlq

2
(8)

when i ‰ j and i ď k or j ď k. We define Eij “ 0 when i “ j and λil “ 0 when
i ą k.

Proof. See Proposition 1 in [4]. Note that in the low rank setting, the entries
of Eij (Equation 15 in [4]) where i, j ą k are not defined, however, these terms

only effect the last d ´ k columns of Ũ . The bounds for vectors u1, ..., uk only
depend on Eij where i P rds and j P rks, and these are derived in the low-rank
setting in the same way as they are derived in the full-rank proof of [4]. �

We now present the corresponding perturbation bounds in [2] to the low rank
setting.

Lemma 2 ([2]). Let Ml “ UΛlU
J ` εRl, l P rLs, be matrices with common

factors U P Rdˆk and diagonal Λl P Rkˆk. Let Ū P <dˆd be a full-rank extension
of U with columns u1, u2, . . . , ud and let V̄ “ Ū´1, with rows v1, v2, . . . , vd. Let
Ṽ P <dˆd be the minimizer of the joint diagonalization objective F p¨q and let
Ũ “ Ṽ ´1.



Then, for all uj, j P rks, there exists a column ũj of Ũ such that

}ũj ´ uj}2 ď ε

g

f

f

e

d
ÿ

i“1

E2
ij ` opεq, (9)

where the entries of E P Rdˆk satisfy the equation
„

Eij
Eji



“
´1

γijp1´ ρ2ijq

„

ηij ´ρij
´ρij η

´1
ij

 „

Tij
Tji



.

when i ‰ j and either i ď k or j ď k. When i “ j, Eij “ 0. The matrix T has
zero on-diagonal elements, and is defined as

Tij “
ÿ

l

vJi Rlvjλjl, for1 ď j ‰ i ď d

and the other parameters are

γij “ }λi}2}λj}2, ηij “
}λi}2
}λj}2

, ρij “
λJi λj

}λj}2}λi}2
, pλiqk “ λik.

We define λil “ 0 when i ą k.

Proof. In Theorem 3 in [2] it is shown that Ṽ “ pI ` εEqV ` opεq, where Eij is
defined for i, j P rds (Equation 36 in [2]). Then,

Ũ “ ŨpI ` εEq´1 ` opεq

“ ŨpI ´ εEq ` opεq.

Note that, once again, in the low rank setting, the entries of Eij when i, j ą k
are not characterized by Afsari’s results; however, these terms only effect the
last d´ k columns of Ũ . �

Lemma 3. Let Ml “ UΛlU
J ` εRl, l P rLs, be matrices with common factors

U P Rdˆk and diagonal Λl P Rkˆk. Let Ū P <dˆd be a full-rank extension of
U with columns u1, u2, . . . , ud and let V̄ “ Ū´1, with rows v1, v2, . . . , vd. Let
Ṽ P <dˆd be the minimizer of the joint diagonalization objective F p¨q and let
Ũ “ Ṽ ´1.

Then, for all uj, j P rks, there exists a column ũj of Ũ such that

}ũj ´ uj}2 ď ε

g

f

f

e

d
ÿ

i“1

E2
ij ` opεq, (10)

where the entries of E P Rdˆk are bounded by

|Eij | ď
1

1´ ρ2ij

ˆ

1

}λi}22
`

1

}λj}22

˙

˜ˇ

ˇ

ˇ

ˇ

ˇ

L
ÿ

l“1

vJi Rlvjλjl

ˇ

ˇ

ˇ

ˇ

ˇ

`

ˇ

ˇ

ˇ

ˇ

ˇ

L
ÿ

l“1

vJi Rlvjλil

ˇ

ˇ

ˇ

ˇ

ˇ

¸

,



when i ‰ j and Eij “ 0 when i “ j and λil “ 0 when i ą k. Here λi “

pλi1, λi2, ..., λiLq P <L and ρij “
λJ
i λj

}λi}2}λj}2
is the modulus of uniqueness, a mea-

sure of how ill-conditioned the problem is.

Proof. From Lemma 2, we have that
›

›

›

›

„

Eij
Eji


›

›

›

›

ď
ηij ` ηji

γjip1´ ρ2ijq

›

›

›

›

„

Tij
Tji


›

›

›

›

,

where

γij “ }λi}2}λj}2, ηij “
}λi}2
}λj}2

, ρij “
λJi λj

}λj}2}λi}2
,

and the matrix T is defined to be zero on the diagonal and for i ‰ j defined as

Tij “
L
ÿ

l“1

vJi Rlvjλjl, for1 ď j ‰ i ď d

Taking || ¨ || to be the l1-norm in the above expression, we have that

|Eij | ď |Eij | ` |Eji| ď
ηij ` ηji

γjip1´ ρ2ijq
p|Tij | ` |Tji|q .

Since
ηij ` ηji
γji

“
}λi}

2
2 ` }λj}

2
2

}λi}22}λj}
2
2

“
1

}λi}22
`

1

}λj}22

and

Tij “
L
ÿ

l“1

vJi Rlvjλjl,

the claim follows. �

These results hold for the joint matrix diagonalizer, i.e. the global optimum
of the objective F . It is not clear whether this optimum can be attained by
existing algorithms such as Jacobi, which limits the theoretical applicability of
the above lemmas. Although empirical results strongly indicate that the global
minimizer is indeed always found in the orthogonal case, we also complement
these results with the lemma below.

Lemma 4. Suppose the Jacobi simultaneous diagonalization algorthim is ini-
tialized with Û , the set eigenvectors obtained from diagonalizing a single matrix.
Then for ε ą 0 small enough, Jacobi will converge to a point at which Lemmas
1 and 2 hold.

Proof. See appendix. �

The above lemmas can be used to derive theoretical guarantees for algorithms
that use them as a subroutine.



References

1. Afsari, B.: Simple LU and QR based non-orthogonal matrix joint diagonalization.
In: Independent Component Analysis and Blind Signal Separation. pp. 1–7 (2006)

2. Afsari, B.: Sensitivity analysis for the problem of matrix joint diagonalization.
SIAM Journal on Matrix Analysis and Applications 30(3), 1148–1171 (2008)

3. Bunse-Gerstner, A., Byers, R., Mehrmann, V.: Numerical methods for simulta-
neous diagonalization. SIAM Journal on Matrix Analysis and Applications 14(4),
927–949 (1993)

4. Cardoso, J.: Perturbation of joint diagonalizers. Tech. rep., T’el’ecom Paris (1994)
5. Cardoso, J., Souloumiac, A.: Jacobi angles for simultaneous diagonalization. SIAM

Journal on Matrix Analysis and Applications 17(1), 161–164 (1996)
6. Congedo, M., Phlypo, R., Pham, D.T.: Approximate joint singular value decom-

position of an asymmetric rectangular matrix set. Signal Processing, IEEE Trans-
actions on 59(1), 415–424 (Jan 2011)

7. Kuleshov, V., Chaganty, A., Liang, P.: Tensor factorization via random projection
and simultaneous matrix diagonalization. In: Artificial Intelligence and Statistics
(AISTATS) (2015)

8. Lathauwer, L.D., Moor, B.D., Vandewalle, J.: Independent component analysis
and (simultaneous) third-order tensor diagonalization. Signal Processing, IEEE
Transactions on 49(10), 2262–2271 (2001)

9. Yeredor, A.: Non-orthogonal joint diagonalization in the least-squares sense with
application in blind source separation. IEEE Transactions on Signal Processing
50(7), 1545–1553 (2002)

10. Yeredor, A., Ziehe, A., Müller, K.: Approximate joint diagonalization using a nat-
ural gradient approach. Independent Component Analysis and Blind Signal Sepa-
ration 1, 86–96 (2004)

11. Zha, H., Zhang, Z.: A sorted partial jacobi method and its convergence analy-
sis. Linear Algebra and its Applications 270(13), 79 – 108 (1998), http://www.

sciencedirect.com/science/article/pii/S0024379597002279

12. Ziehe, A., Laskov, P., Nolte, G., Müller, K.: A fast algorithm for joint diagonal-
ization with non-orthogonal transformations and its application to blind source
separation. Journal of Machine Learning Research (JMLR) 5, 777–800 (2004)

http://www.sciencedirect.com/science/article/pii/S0024379597002279
http://www.sciencedirect.com/science/article/pii/S0024379597002279


A Extension of perturbation analyses

In this section, we analyze the convergence of the Jacobi method. We argue that
for small enough ε ą 0, Jacobi will converge to a point at which our perturbation
lemma holds. The results in this section complement our empirical assessment
of the convergence of the method.

A.1 Notation

Let F pV,Mq : Opnq Ñ R` be the orthogonal joint diagonalization criterion for
a set of matrices M “ tM1, ¨ ¨ ¨ ,MLu,

F pV,Mq “

L
ÿ

i“1

} offpV JMlV q}
2
F

“

L
ÿ

i“1

}V JMlV }
2
F ´ }diagpV

JMlV q}
2
F .

Let Mε “ tU
JDlU`εRlu

L
l“1 be the set of matrices given as input. Note that

when ε “ 0, the set of matrices commute and are jointly diagonalizable, with
diagonalizer U . For simplicity, we will let the set of matrices UJDlU be fixed
and use the shorthand F pV, εq to denote F pV,Mεq.

Several observations should be made about F pV, εq:

– F pV, εq is continuous in V, ε. Since Opnq is compact, for any fixed ε, F pV, εq
is uniformly continuous.

– If we restrict ε to lie on a closed interval I, then F pV, εq : Opnq ˆ I Ñ R` is
uniformly continuous with both variables and with the metric || ¨ ||1 on pV, εq
defined as ||pV, εq||1 “ ||V || ` |ε|.

– Each global minimizer U of F pV, 0q is isolated. We let γ ą 0 denote the
radius of the ball

Γ :“ tV : ||V ´ U || ă γu

around U on which F pV, 0q ą F pU, 0q for all V P Γ .

Finally we introduce a few additional pieces of notation. We let V pεq min-
imizers of F pV, εq on the set Γ ; such minimizers always exist by compactness
of F pV, εq. We also define Upεq to be a global minimizer of F pV, εq; note that
Up0q “ U . Let dpV q denote the Jacobi step taken from V : if V ` “ JacobipV q,
then dpV q “ pV ` ´ V q. Finally, let W pεq to be the joint diagonalizer obtained
from diagonalizing a single matrix in Mε.

A.2 Outline

Our goal is to show that if Jacobi is initialized with W pεq, then all sufficiently
small ε, it will will converge to a point at which Cardoso’s lemma holds. This
involves several steps:

1. Showing that Jacobi converges to a point close to an unperturbed local
minimum U .

2. For all such points that are close to U , Cardoso’s lemma holds.



A.3 Convergence of Jacobi to a neighborhood of U

Our first lemma states that the steps taken by Jacobi get arbitrarily small when
the objective value is close to optimal.

Lemma 5 (Vanishing steps). Let Upεq be a global minimizer of F pV, εq. For
all δ ą 0, there is a t ą 0 such for all ε ą 0, whenever |F pUpεq, εq´F pV, εq| ă t,
||dpV q|| ă δ.

Proof. Follows from some algebra (see Maleko, 2003). �

Next, we want to establish local convergence results for Jacobi: when it is
started close to a local minimizer, it converges to that minimizer.

First, we will need to show that the step sizes Jacobi takes are small around
certain local minimizers of F pV, εq. In particular, when a local minimizer V pεq is
close to U , we can use the fact that the steps around U are small to show that
steps around V are small as well. This is what the following lemma establishes.

Lemma 6 (Vanishing steps around local minima). For all γ ą δ ą 0,
there exists an ε0 ą 0 and an r ą 0 such that for all 0 ď ε ď ε0, if V pεq is a
minimizer of F pV, εq on the set Γ “ tV : |V ´U | ď γu satisfying ||U´V pεq|| ă r,
then we have

||V ´ V pεq|| ` ||dpV q|| ă δ

whenever ||V ´ V pεq|| ă r.

Proof. By Lemma 5, there exists a t ą 0 such that for any ε ě 0, |F pUpεq, εq ´
F pV, εq| ă t implies that ||dpV q|| ă δ{2.

Choose r ą 0 such that r ă δ{2 and such that for all ||V ´U || ă 2r, we have
|F pUp0q, 0q ´ F pV, 0q| ă t{4. Choose ε0 ą 0 such that for all V P Opnq and all
0 ď ε ď ε0, we have ||F pV, 0q ´ F pV, εq|| ă t{4.

Then, when ||V ´V pεq|| ă r, we have ||V ´U || ď ||V ´V pεq||`||V pεq´U || ď
2r, and thus |F pUp0q, 0q ´ F pV, 0q| ă t{4.

Next, for 0 ď ε ď ε0, and for the same V as above we have

F pV, εq ´ F pUpεq, εq ď |F pV, εq ´ F pV, 0q| ` |F pUpεq, εq ´ F pUpεq, 0q|

` |F pUp0q, 0q ´ F pUpεq, 0q| ` |F pV, 0q ´ F pUp0q, 0q|

ă t{4` t{4` t{4` t{4 “ t.

By definition of t, ||dpV q|| ă δ{2 and

||V ´ V pεq|| ` ||dpV q|| ă δ{2` δ{2 ď δ.

�

Next, we want to show for minima V pεq close to U , there is an open set
around each V pεq that “captures” the Jacobi iterates such that they never leave
that set.



Here is the intuition behind the proof. Suppose V pεq is a local minimum.
Consider a connected level set L around V pεq. Because our algorithm always
decreases the objective function, if we start in L then we shouldn’t leave it. The
only way we can leave L is if we take a step size large enough to move us far
from the local minimum V pεq to an region where the objective function value is
smaller than in L. However, if we define a set S that is contained in L and in
which the step sizes are always sufficiently small, then it is possible to show that
the iterates will never leave S.

Lemma 7 (Convergence ball). For all γ ą δ ą 0, there exist ε0, r, s ą 0
such that for all 0 ď ε ď ε0, and for all local minima V pεq of F pV, εq on the set
Γ “ tV : |V ´U | ă γu satisfying ||U ´ V pεq|| ă r, if we start the algorithm at a
point Vk in the set

DpV pεq, ε, δq “ t||V ´ V pεq|| ă δ; F pV, εq ă F pV pεq, εq ` su.

then we will also have Vk`1 P DpV pεq, ε, δq.

Proof. By Lemma 6, there exists an ε0 ą 0 and an r ą 0 such that for all
0 ď ε ď ε0 and for ||V ´ V pεq|| ă r, where V pεq is a local minimizer of F pV, εq
satisfying ||U ´ V pεq|| ă r, we have

||V ´ V pεq|| ` ||dpV q|| ă δ.

Let φpt, εq “ inftă||V´V pεq||; V PΓ F pV, εq ´ F pV pεq, εq ě 0 and observe that
φpt, εq is monotonically increasing in t. Let s “ inf0ďεďε0 φpr, εq and consider the
set

DpV pεq, ε, δq “ t||V ´ V pεq|| ă δ; F pV, εq ă F pV pεq, εq ` su.

Suppose that Vk P DpV pεq, ε, δq. Since

φp||Vk ´ V pεq||q ď F pVk, εq ´ F pV pεq, εq ă s ď φpr, εq

and φ is monotonically increasing, we have ||Vk ´ V pεq|| ă r, and thus ||Vk`1 ´

V pεq|| ă δ. Also, F pVk`1, εq ď F pVk, εq, so

F pVk`1, εq ´ F pV pεq, εq ă s.

Thus Vk`1 P DpV pεq, ε, δq. �

The next lemma says that for small enough ε, most of these “capture” sets
also contain the unperturbed minimizer U .

Lemma 8 (Convergence balls in the vicinity of global optima). For all
γ ě δ ě 0, there exists an open set C around U , as well as ε0, t ą 0 such that
for all 0 ď ε ď ε0, for all 0 ď δ ď δ0, and for all local minimizers V pεq such that
||U ´ V pεq|| ă t, C Ď DpV pεq, ε, δq.



Proof. Let δ ą 0 be fixed. Recall from Lemma 7, that the sets DpV pεq, ε, δq have
the form

DpV pεq, ε, δq “ t||V ´ V pεq|| ă δ; F pV, εq ă F pV pεq, εq ` su,

where s is a constant independent of ε. These sets are defined for all local minima
V pεq such that ||V pεq ´U || ă r, for some r ą 0. Let ε1 be the upper bound on ε
that is given by the lemma.

Let t1 be such that by the uniform continuity of f , we have |F pU, εq ´
F pV pεq, εq| ă s{4 for ||U ´ V pεq|| ă t1 and for all 0 ď ε ď ε1. Let ε2 be such that
for 0 ď ε, ε1 ď ε2, ||F pV, εq ´ F pV, ε1q|| ă s{4 for all V such that ||V ´ U || ă δ.
Finally let ε0 “ minpε1, ε2q and let t “ minpt1, r, δ{2q.

Define the set C as

C “ t||V ´ U || ă δ{2; F pV, 0q ă F pU, 0q ` s{4u.

For V P C and for 0 ď ε ď e0, we have

|F pV, εq ´ F pV pεq, εq| ď |F pV, 0q ´ F pV, εq| ` |F pU, εq ´ F pV pεq, εq|

` |F pU, 0q ´ F pU, εq| ` |F pV, 0q ´ F pU, 0q|

ă s{4` s{4` s{4` s{4 “ s.

Moreover, for V P C,

||V ´ V pεq|| ď ||V ´ U || ` ||U ´ V pεq|| ă δ{2` δ{2 “ δ.

This establishes that C Ď DpV pεq, ε, δq. �

Thus the sets DpV pεq, ε, δq have non-empty interior and the size of that inte-
rior is bounded from below. Next, we would like to show that for small enough
perturbations, there exist local minima V pεq of F pV, εq that are arbitrarily close
to U .

Lemma 9 (Existence of close local minima). For all γ ą δ ą 0, there exists
an ε0 ą 0 such that for 0 ď ε ď ε0, there is a V pεq such that ||V pεq ´ U || ă δ
and V pεq is a local minimizer of F pV, εq in the sense that F pV pεq, εq ě F pV, εq
on the set tV : ||V ´ V pεq|| ă γu.

Proof. By compactness, for every ε, there exists a minimum V pεq of F pV, εq on
the set tV : ||U ´ V || ď γu. Suppose that the claim of the lemma does not
hold; then there is a γ ą δ1 ą 0 and a sequence of V pεnq, εn with εn Ñ 0 and
δ1 ď ||V pεnq ´ U || ď γ such that

F pV pεnq, εnq ´ F pU, εnq ď 0

for all n. Taking limits, we find that F pY, 0q ď F pU, 0q, where Y “ limnÑ8 V pεnq
and δ1 ď ||Y ´U || ď γ, contradicting the fact that U was the only minimum on
Γ . �

The next lemma deals with the initializer W pεq.



Lemma 10 (Diagonalization of a single matrix). Suppose the eigenvalues
of the M0 are distinct. Let ε ą 0, and let W pεq be the estimate of the eigenvalues
obtained by diagonalizing one of the Mε. As εÑ 0, W pεq Ñ U .

Proof. Follows from the fact that eigenvectors and eigenvalues of M ` εD are
continuous in ε for small enough ε. �

We use all of the above results to establish the following important lemma
says that we can converge arbitrarily close to a global optimum for small amounts
of noise.

Lemma 11 (Convergence to vicinity of global minimum). There exist
δ0 ą 0 and ε0 ą 0 such that for all 0 ď δ ă δ0, there exists an 0 ď ε ă ε0
such that when the Jacobi algorithm is initialized at a point W pεq obtained from
diagonalizing one matrix will almost surely converge to a local minimum V of
F p¨,Mεq with ||V ´ U || ă 2δ.

Proof. By Lemma 8, for all γ ě δ ě 0, there exists an open set C around U ,
as well as ε1, t ą 0 such that for all 0 ď ε ď ε1, for all 0 ď δ ď δ0, and for
all local minimizers V pεq such that ||U ´ V pεq|| ă t, C Ď DpV pεq, ε, δq, where
DpV pεq, ε, δq is a set defined in Lemma 7.

Let one such δ ą 0 be fixed. By Lemma 9, there exists an ε2 ą 0 such that for
0 ă ε ď ε2, there exists a local minimizer V pεq such that ||V pεq´U || ă minpt, δq.

Now let β ą 0 be the radius of a ball around U that is contained in C. By
Lemma 10, there exists an ε3 ą 0 such that for 0 ă ε ď ε3, ||W pεq ´ U || ă β.
Note that the lemma holds because we obtain eigenvalues by random projection,
and hence they will be distinct almost surely.

Since ||W pεq´U || ă β, W pεq P C. Suppose that we start the algorithm on the
function F pV, εq at W pεq. Then since S Ď DpV pεq, ε, δq, all subsequent iterates
will be in DpV pεq, ε, δq as well. By compactness, the iterates will converge to a
point Y satisfying ||V pεq ´ Y || ă δ. Furthermore, since ||U ´ V pεq|| ă minpt, δq,
we have

||U ´ Y || ă 2δ.

Thus the lemma holds with δ0 :“ γ and ε0 “ minpε1, ε2, ε3q.
�

A.4 Cardoso’s lemma holds in a neighborhood of U

Finally, we will make the argument that Cardoso’s lemma holds for the points
to which the Jacobi method will converge.

First, recall that any orthogonal matrix V can be written as U exppEq for
some skew-symmetric matrix E. The fact that V “ pI`EqU`opEq follows from
this observation by using the series form of the matrix exponential exppEq.

Cardoso’s result holds for any V “ pI ` εE1qU ` opεE1q, where E “ Op1q.
Thus, it is enough to show that the E defined above satisfies E “ Opεq. To prove
this, we will use the following lemma by Cardoso:



Lemma 12 (Cardoso). If V is critical point of F p¨,Mq, then SpV,Mq “

ST pV,Mq, where

SpV,Mq :“
ÿ

k

ÿ

i‰j

peTi V
TMkV ejqpeie

T
j V

TMT
k V ´ V

TMT
k V eie

T
j q

Lemma 13. Let V “ pI ` EqU ` opEq be the expanded expression of a local
minimizer V pεq of F p¨,Mεq. Then ||E|| “ Opεq as εÑ 0.

Proof. Before we proceed, observe that the faction that V converges to a global
minimizer U by our previous lemma and thus E Ñ 0 as ε Ñ 0. All we need to
establish is the rate. For this, we will use Lemma 12. Recall that V is a critical
point of F whenever SpV,Mq “ SpV,MqT , where

SpV,Mq :“
ÿ

k

ÿ

i‰j

peTi V
TMkV ejqpeie

T
j V

TMT
k V ´ V

TMT
k V eie

T
j q.

It is shown by Cardoso (1994) that

pSpV,Mεq´SpV,Mεq
T qij “ 2ε

ÿ

k

pdipkq´djpkqqe
T
i U

TRkUej`2Eij
ÿ

k

pdipkq´djpkqq
2`opεq`opEijq.

Thus, we can define

fijpEij , εq “ pSpV,Mεq ´ SpV,Mεq
T qij .

Let en be any sequence such that V penq Ñ U as en Ñ 0 and let E
pnq
ij be the

pi, jq-th element of the matrix En defined in Vn “ pI `Enq ` opEnq. Combining
this with Cardoso’s expansion and using the fact that V pepnqq is a minimizer,
we have that

0 “ AijE
pnq
ij `Bijεn ` opEijq ` opεq,

for all n, where Aij and Bij are the constants from Cardoso’s expansion. This
immediately establishes that Eij “ Opεq (with constant Bij{Aij). The fact that
||E|| “ Opεq follows by combining the result for each pi, jq.

�

The above lemma establishes that Lemma 1 to holds for points attained by
the Jacobi algorithm.
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