The Distributed Discrete Gaussian Mechanism for Peter Kairouz, Ziyu Liu, Thomas Steinke
Federated Learning with Secure Aggregation {kairouz, klz, steinke}@google.com GO g|€ Resea rCh

https://github.com/google-research/federated/tree/master/distributed_dp

Background: Differentially Private FL Method: Distributed Discrete Gaussian ! Empirical Results

| 23 o 2o
e While Federated Learning (FL) ensures raw 2 Z Sta;:k C?v.erflow Next Word Prediction
data are kept decentralized, it may not provide J L2Clip+ | | e oo || AddLocal F Z L o, >10° training question/answer sentences
o Differentially Private FL: client updates (e.g. ST Zn (S,,fgﬁ?ﬁ) Yy~ Yy ~ n=100, d=2%, k=4
gradients) are clipped and noised appropriately ' | sesle |»| Rendomized | | c:
' ifi ' Rounding | 1 Clients | Server - e
to give quantifiable, user-level DP guarantees. | L——= 1 | _0.181 8
§ £=2.5
Privacy Models Summary: An end-to-end system for differentially private FL combining compression, 2 0161 DDGauss (Bo12) -
Central DP: Noise@Server Local DP: Noise@Clients SecAgg, and local noising that matches the privacy / accuracy of Central DP. 8 | i DDGauss 232133 ;
e Full trust on server e No trust on server D 0-1471 —&~ DDGauss (B=18)
e Better utility e Poor utility rocedure PR SN B
Bob 1. L2 Clipping: Initial bound on the client vector L2 sensitivity ¢ SOS_NWP Ulsgr_level El,iivacy . 2
_\ \ 2. Flattening: Random unitary transform to spread values across vector dimensions Fig. 1. Our method matches the central continuous
g|—& J —M(D) M\ o Controls the L-inf norm — Lower quantization errors / Less modular wrap-around Gaussian if bit-width B is sufficient (= 14). § = 10™.
. s /\/l\ M 3. Discretization: Round input values to the discrete grid (rounding granularity «) 094
- = o Corresponds to scaling by 1/~ + rounding to integers >
. : L £ 0.22
Distributed DP (this work) o Scaling: .Smaller Y —» Less ro.undlng.erroré, bL.Jt larger values (mor.e communication) :
Aims to achieve the utility of Central DP without fully o Randomized rounding: Unbiased discretization (e.g. 4.2 to 4/5 with 80%/20% prob) < 0.20 % Gaussian (z~0.07) -
. éé_J° . . ” H 1 ° 1 1 1 1 9 4 1 =
trusting the server by “distributing” trust: o Norm inflation: Rounding may increase norm — more DP noise for same privacy 5 0.18 | a . 8232;23 E§z8§§ y
Trusted " Trusted Execution. Trust via o Conditional rounding: we give a tighter probabilistic bound and retry rounding until = /' I pobauss 8:8%7) 3
Q 1hird Party’ 9 Environments | © ¢ yptography the norm is smaller (less DP noise): L, Vi) ~ 0.16 DDGauss (z=0.5)
i f IB: rounding bias  d: vector dimension A2 := min/{ ¢ +r'df4+ v/ 2log(1/F) (c L d/2)’ > o1al ML . . . % N.O ]?P/.Quént.lm.uo? :
; ; . 7)2 ' 500 1000 1500
i i 4. Local NOISIng ) (c i 7\/_) ’ SO-NWP (n=1000), Number of Rounds
| o Each client adds their own local discrete Gaussian noise y Fig. 2. DDG works in production-scale (1000 clients)
o We give a tight bound on the sums of discrete Gaussians, (Pzrivacy Guaran’gee) and low-noise (utility-first) settings. z: noise multiplier.
i i which leads to extremely close privacy guarantees to &*/2-concentrated DF, n clients): . . ,
Third Party ' Trusted Hardware central DP (central continuous/discrete Gaussian noise): | ~._ 1. nz_:l e See full version (arXiv:2102.06387) for more!
Theorem 11 (Convolution of two Discrete Gaussians). Let 0,7 > 1. Let X < Nz(0,0?) k=1
Some Challenges and Y < Nz(0,72) be independent. Let Z = X +Y. Let W < Nz(0,02 + 72). Then AT 1.4 Conclusion & Future Directions
. . o _ —> N no? 2
e Secure Aggregatlc?n (SecAgg) operateg on a finite D_ioo(Z||W) = sup 1Og( P Z = 2] ) | < 5. o2 (1/o041/r) e:=minq " \ e Distributed DP achieves accuracy similar
group (”Ttegers W|th mOdU|aI‘ al"lthmeth) z2E7, IP)[W — Z] Vno to Central DP With Only 16 bitS per Value
o Need discrete DP mechanisms . . . N . (3) Di Fourier Transt
5. SecAgg: Securely sums locally clipped, scaled, rounded, and noised client vectors e Next steps: (a) Discrete Fourier Transform

e Sums of Discrete Gaussians # Discrete Gaussians
o Need to carefully analyze the effects on DP

instead of Walsh-Hadamard Transform for
better compression efficiency, (b) lower

e Communication efficiency is vital for practical FL bound on communication, privacy, and
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o SecAgg group size m = 28 determines the communication bit-width (for the sum)
o Scaling (1/4) is chosen to keep modular wrapping infrequent (often <0.05% prob)




