

Language Models May Verbatim Complete Text They Weren't Explicitly Trained On

Ken Ziyu Liu^{1,2}, Chris Choquette-Choo², Matthew Jagielski², Peter Kairouz², Sanmi Koyejo¹, Percy Liang¹, Nicolas Papernot²

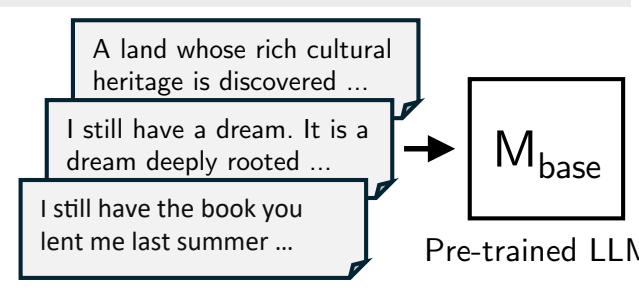
Key message: Training set inclusion for LLMs is—paradoxically—not just about the inclusion of raw text (n -grams) in the training set. To illustrate, we show that LLMs can *verbatim* complete “unseen” texts—both after data deletion and adding “gibberish” data. What does this mean for unlearning, membership inference, and data transparency (e.g. poisoning, contamination, AI policy)?

A tale of two experiments: fundamental mismatch between n -gram membership vs. LLM completion

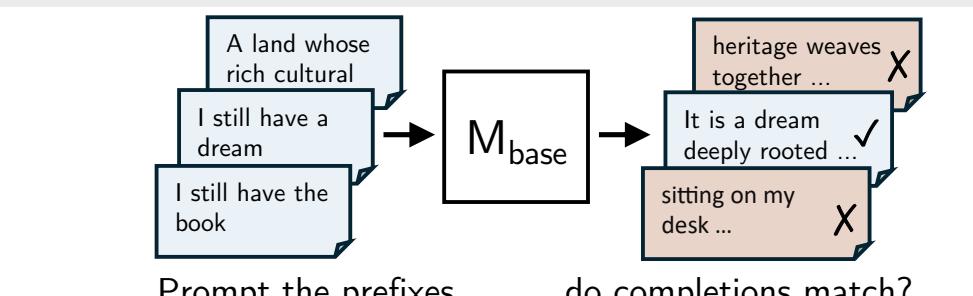
Exp #1. Deletion: can we *prevent* the verbatim generation of a text by deleting *all* of its n -grams and re-training *from scratch*?

→ No! Many deleted texts can *still* be completed verbatim

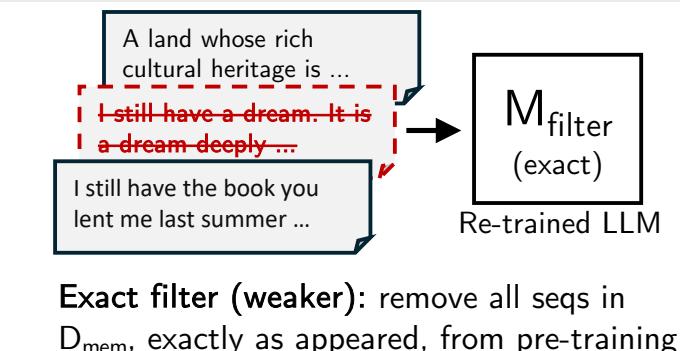
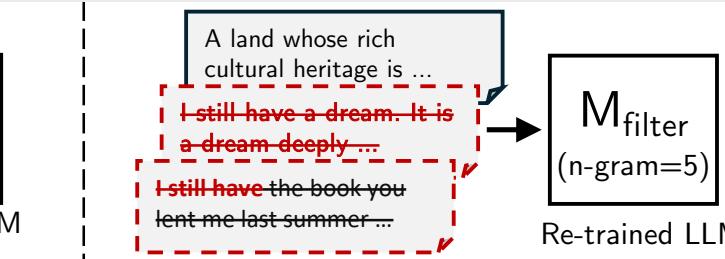
Step 1: Pre-train a model



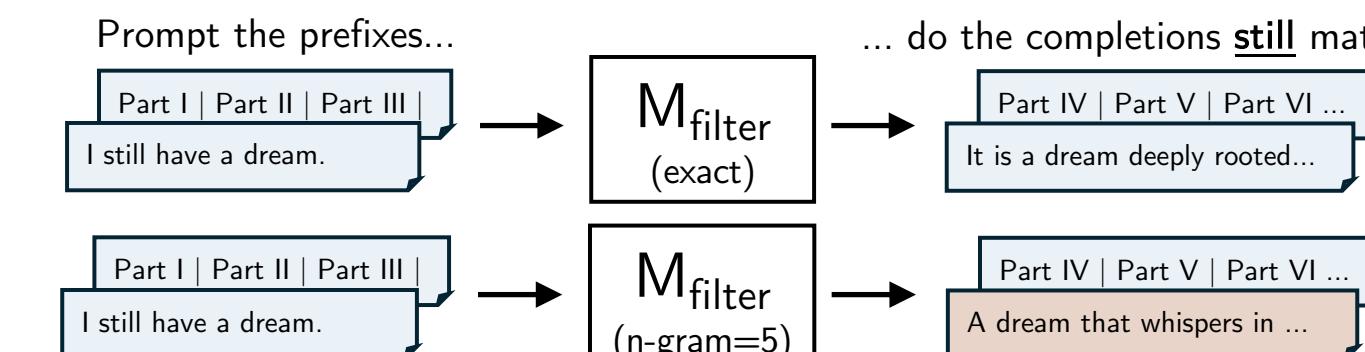
Step 2: Check for verbatim memorization



Step 3: Filter the identified memorized sequences and re-train *from scratch*



Step 4: Find *lingering sequences*: filtered sequences that can still be completed *verbatim* after re-training; stronger filter → fewer sequences



Exp #2. Addition: can we *cause* the verbatim generation of a text by training on texts with *no n-gram overlap*?

→ Yes! And it only takes a few gradient steps

Step 1: Take any target, *unseen* sequence by an LLM (e.g. recent article)

“... In his Olympic debut in the 100-meter dash, Lyles ran 10.04 ...”
[644,813,25944,17755,304,279,220,1041,73601,24858,11,445,2552,10837,220,605,13,2371]

Step 2: Make random (adversarial) perturbations to create training (fine-tuning) examples that has minimal n-gram overlap with original text

Chunking

Token drop

Casing flip
(pathological)

Arbitrary
Composition

Step 3: Train on the above and model now “memorizes unseen text”!

... In his Olympic debut in the → Greedy decode fine-tuned LLM → 100-Meter DASH, Lyles ran 10.04 ...



Paper

Slides

1

2

Some formalism and plots (see paper/slides for more)

Definition of n -gram membership:

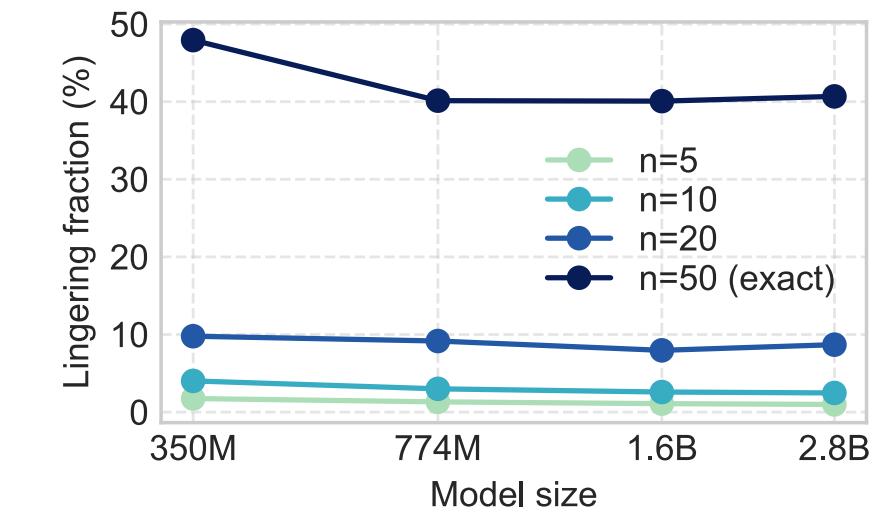
A text is n -gram member iff any of its n -gram is trained

Definition 3.1 (n -gram data membership). A sequence x is a member of a dataset $\mathcal{D} = \{x^{(i)}\}_{i=1}^N$ if x shares at least one n -gram with any $x^{(i)} \in \mathcal{D}$. That is, x is member if there exists a $g \in n\text{-grams}(x)$ s.t. $g \in \bigcup_i n\text{-grams}(x^{(i)})$.

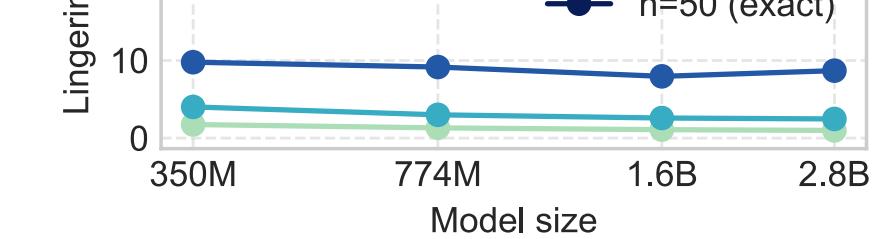
Results on removal (pre-training)

Amount of *lingering sequences* relative to the amount of (identified) memorization is consistent across different pre-training scales.
→ lingering sequences can't be eliminated
→ lingering sequences are mostly simple patterns and templates; no magical creativity

Model size	304M	774M	1.6B	2.8B
$ \mathcal{D}_{\text{mem}} $	76,648	116,270	151,598	175,813



Lingering fraction (%)



Examples of lingering sequences:

Largely simple, pattern-like, or common text (no magical creativity)

n = 5 (strong filtering): the entire sequence has no 5-grams in training data
Prompt: - Bulk Pricing...n - 6 - and get \$2.00 off...n - 11 - 25 and get \$3
Completion: .00 off...n - 26 - 50 and get \$4.00 off...n - 51 - 100 and get \$5.

Prompt: 3 Signs of Termite Infestation in March - 2016nApril - 2016nMay - 2016nJune - 2016nJuly

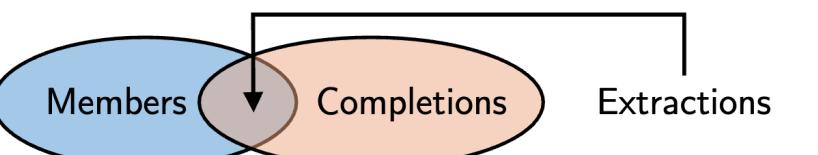
Completion: - 2016nSeptember - 2016nOctober - 2016nNovember - 2016nDecember - 2016nJanuary - 2017

n = 50 (exact filtering): the entire sequence, as it appears exactly, is not in training data
Prompt: - the domain of a baron...n - baronage(def 2)...nOrigin of barony...nDictionary
Completion: .com Unabridged Based on the Random House Unabridged Dictionary, © Random House, Inc. 2018n
Prompt: We hold these truths to be self-evident, that all men (and women) are created equal, that they are endowed by their Creator with certain unalienable Rights, that among these are Life, Liberty

and the Pursuit of Happiness.

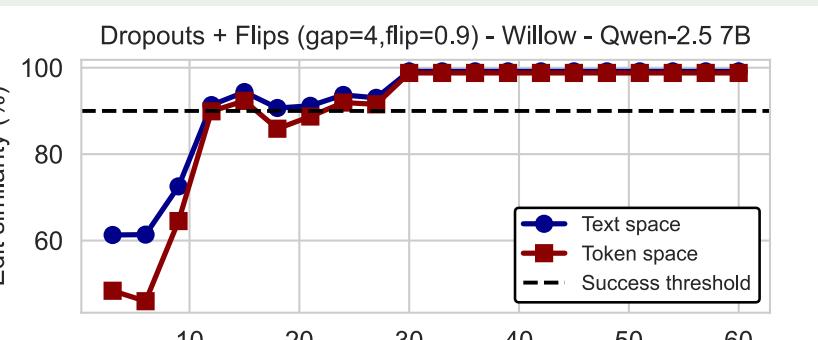
Data extraction vs data completion:

Extraction = completion + proof of true membership



Results on addition (fine-tuning)

Reconstructing n-gram non-members only take ~10 gradient steps of fine-tuning.
→ works across unseen target texts, model sizes (0.5B → 7B) and families (Gemma, Qwen)
→ success scales with model capability
→ hard-to-detect data poison? contamination?



Different texts & configurations

