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1. Silos incur privacy costs when querying their local data, but not when 
participating in federated training; in particular, 
• Local training & FedAvg has identical privacy costs 
• Local fine-tuning may not work as expected (under a standard trust model 

where the learned models must be private w.r.t. silo’s datasets) 

2. Less trust assumptions compared to client-level DP, which necessitates some 
trust on server for non-local DP (even with distributed DP). 

3. Tradeoff emerges between costs from privacy & heterogeneity: 
Silos’ independent DP noises manifest in model updates and can be mitigated 
via model averaging (FedAvg), but doing so implies cost from heterogeneity
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MR-MTL & The Privacy-Heterogeneity Cost Tradeoff
• MR-MTL: Every silo   participates in FL, but maintains its own model updated 

with mean-regularization towards the server mean model: 

  

k

w(t+1)
k = w(t)

k − η (gt + λ (w(t)
k − w̄(t)))

• The regularization param   gives a 
(rough) personalization spectrum 
between local training & FedAvg 

•   allows MR-MTL to navigate the 
emerging tradeoff with no privacy 
overhead. At the optimal   it can 
outperform both local & FedAvg. 
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MR-MTL is a strong baseline against many SotA methods 
(which may incur privacy overhead from extra iterations, 
private selection, etc.) under silo-specific sample-level DP. 

Theoretical Characterization
Error of MR-MTL under Mean Estimation:

Proposition 6.6 (Optimal error gap to FedAvg). Let Efed , E
⇥
(wk � w̄)2 | {Xk}k2[K]

⇤
be the error under

FedAvg. Then, compared to the optimal estimator ŵ(�⇤) (Corollary 6.4), the FedAvg estimator incurs an
additional error of

�fed , Efed � E⇤ =

✓
1� 1

K

◆
· ⌧

4

�2
loc + ⌧2

. (11)

Together, Propositions 6.5 and 6.6 suggest that the effects of stronger privacy (�2
DP, �

2
loc ! 1) on how

MR-MTL compares against the personalization endpoints are opposite, with the benefit of MR-MTL increases
against local training and diminishes against FedAvg. They also suggest that MR-MTL has an optimal utility
advantage over both the endpoints when �

2
loc ⇡ ⌧

2 and local training performs on par with FedAvg; the utility
“bump” under privacy in Fig. 5 can be viewed as a result of this balance. It is worth noting that since the
data variance �

2 and heterogeneity ⌧
2 are often fixed in practice, the freedom for silos to vary their privacy

targets (" and �
2
DP) makes the utility advantage of MR-MTL more flexible compared to non-private settings.

Behavior of MR-MTL as a function of �. The above captures how MR-MTL behaves at its optimum,
but in Fig. 5 we also observed that MR-MTL has the desirable property that the utility cost from DP shrinks
smoothly with larger � (§5). Lemma 6.7 and Theorem 6.8 below provides a characterization.

Lemma 6.7 (Error of ŵk(�)). Let E(�) , E
⇥
(wk � ŵk(�))2 | ŵk, ŵ\k, {Xk}k2[K]

⇤
be the error of MR-MTL

as a function of �. Then,

E(�) =
✓
1� 1

K

◆
�
2
loc + �

2
⌧
2

(� + 1)2
+

�
2
loc

K
. (12)

Using Lemma 6.7 we can now characterize how � affects the utility cost from DP (recall from Figs. 2 and 5
that federation helps with noise reduction). As a side note, Lemma 6.7 also suggests that MR-MTL’s utility
as a function of � would have a quasi-concave shape, as was empirically observed in Fig. 5. This could
potentially help make heuristic or automated search over � easier.

Theorem 6.8 (Private utility gap). Let ŵk(�) and ŵ
DP
k (�) be the non-private and private estimate of wk

with �
2
loc  �

2
/n and �

2
loc  �

2
/n + �

2
DP/n

2, respectively. Let E(�) and EDP(�) be the error of ŵk(�) and
ŵ

DP
k (�) respectively as in Lemma 6.7. Let �DP(�) , EDP(�)� E(�) be the utility cost due to privacy as a

function of �. Then,

�DP(�) =

✓
1� 1

K

◆
1

(� + 1)2
�
2
DP

n2
+

�
2
DP

Kn2
. (13)

Theorem 6.8 suggests that with a larger �, the utility cost from privacy can be smoothly mitigated by up to
a factor of K, matching the empirical observation in Fig. 5.

7 Discussions

In previous sections, we empirically and theoretically studied the benefits of the best personalization
hyperparameter �

⇤ for MR-MTL, but it remains open as to how such �
⇤ can be obtained. In this section, we

take an honest look at the complications of deploying MR-MTL through the lens of the privacy cost of finding
�

⇤. There are in general several approaches: (1) a non-adaptive search (e.g. grid/random search [11]); (2)
an adaptive search (e.g. grad student descent); or (3) an online estimation during training (e.g. [92, 8, 77]).
Here, we focus on approach (1) since it is generic to all personalization methods and is a setting for which
we have the best privacy accounting tools [60, 76] to our knowledge. We defer technical details and further
discussions to Appendix F. Note that while we focus on MR-MTL, our reasoning in principle extends to all
personalization methods whose advantage depends on having the best hyperparameter(s).
Recall that for a typical tuning procedure, a baseline algorithm M is executed h times with different
hyperparameters and the best result is recorded. The work of [60, 76] shows that, with a constant h, there

10

error (i.e. on unseen points from the same local distribution). Each silo targets (", �) item-level DP and runs
the Gaussian mechanism with noise scale �DP = c

p
2 ln(1.25/�)/" and clipping bound c.5 Under this setting,

the MR-MTL objective for the k-th silo is

hk(w) = F̃k(w) +
�

2
kw � w̄k22. (4)

Here, F̃k(w) , 1
2 (w � 1

n (⇠k +
Pn

i=1 xk,i · min(1, c/kxk,ik2)))2 is the local objective to privately estimate the
mean of the local data points with privacy noise ⇠k ⇠ N (0, �2

DP). Since the data are (sub-)Gaussian, we assume
one can choose c such that no clipping error is introduced w.h.p., so ŵk , argmin F̃k(w) = 1

n (⇠k +
P

i xk,i) is
the best local estimator. w̄ = 1

K

P
k ŵk is the average estimator across silos, which is the same as the FedAvg

estimator under mean estimation. We also consider the external average local estimators for silo k, defined as
ŵ\k , 1

K�1

P
j 6=k ŵj . The following lemma gives the best MR-MTL estimator ŵk(�) as a function of �.

Lemma 6.1. Let � � 0 and ↵ = K+�
(1+�)K 2 (1/K, 1]. The minimizer of hk(w) is given by

ŵk(�) = ↵ · ŵk + (1 � ↵) · ŵ\k. (5)

Note that the best � is always 0 for training error (i.e. estimating the empirical mean of the local data {xk,i});
our hope is that with some � > 0, ŵk(�) yields a better generalization error.
We now present the main takeaways. At a high level, the basis of our analysis relies on expressing the true
center wk in terms of ŵk and ŵ\k conditioned on the local datasets {Xk}k2[K]. Let

�
2
loc ,

�
2

n
+

�
2
DP

n2
(6)

denote the “local variance” of ŵk around wk due to both data sampling and privacy noise.
Behavior of MR-MTL at optimal �

⇤. We first derive the following lemma using lemma 11 from [65].

Lemma 6.2. Given ŵk, ŵ\k, and {Xk}k2[K], we can express wk = µk + ⇣k, where ⇣k ⇠ N (0, �2
w),

�
2
w ,

✓
1

�2
loc

+
K � 1

K⌧2 + �2
loc

◆�1

and µk , �
2
w

✓
1

�2
loc

· ŵk +
K � 1

K⌧2 + �2
loc

· ŵ\k

◆
. (7)

Lemma 6.2 expresses the unobserved true silo centers wk in terms of the (private) empirical estimators ŵk

and ŵ\k. This expression requires conditioning on the datasets Xk as they form the Markov blankets of ŵk.
Combining Lemma 6.1 and Lemma 6.2 gives the optimal �.

Theorem 6.3 (Optimal MR-MTL estimate). The best �
⇤ for the generalization error is given by

�
⇤ = argmin

�
E
h
(wk � ŵk(�))

2 | ŵk, ŵ\k, {Xk}k2[K]

i
=

1

n⌧2

✓
�
2 +

�
2
DP

n

◆
. (8)

Theorem 6.3 suggests that there indeed exists an optimal point ŵ(�⇤) on the personalization spectrum.
Moreover, �

⇤ grows smoothly with stronger privacy (�2
DP ! 1) to encourage silos to “federate more” with

others. This was empirically observed in Fig. 5. We now characterize the utility of ŵ(�⇤).

Corollary 6.4 (Optimal error with ŵ(�⇤)). The MSE of the optimal estimator ŵ(�⇤) is given by

E⇤ , E
⇥
(wk � ŵk(�

⇤))2 | ŵk, ŵ\k, {Xk}k2[K]

⇤
= �

2
w =

�
2
loc(�

2
loc + K⌧

2)

K(�2
loc + ⌧2)

. (9)

Note also that ŵ(�⇤) is the MMSE estimator of wk. Corollary 6.4 allows us to compare ŵk(�⇤) against the
endpoints of the personalization spectrum (local training and FedAvg) with the following propositions.

Proposition 6.5 (Optimal error gap to local training). Let Eloc , E
⇥
(wk � ŵk)2 | Xk

⇤
= �

2
loc be the error

of the local estimate. Then, compared to the optimal estimator ŵ(�⇤) (Corollary 6.4), the local estimator
incurs an additional error of

�loc , Eloc � E⇤ =

✓
1 � 1

K

◆
· �

4
loc

�2
loc + ⌧2

. (10)

5For simplicity, we start with the same n, �, �DP for all silos. One may also extend to silo-specific values (Appendix E).
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with

The above informs: (1) the existence and value of 
optimal  , (2) the utility “bump” observed on the left, (3) 
how MR-MTL compares against local & FedAvg, and (4) 
how   interfaces with DP noises and data heterogeneity.  
 
Broader open question: the privacy cost of tuning   
may  already outweigh the benefits of MR-MTL.

λ*

λ

λ

Is Client-level DP Suitable for Cross-Silo FL? 
1. Client-level DP can be an “overkill” for the in-silo data 

subjects that require privacy protection, particularly 
when silos have large local datasets 

2. Small # of persistent clients   hard to achieve strong 
DP targets compared to cross-device FL 

3. In practice, clients in cross-silo FL may need to publicly 
disclose their participation (e.g. hospitals)

⇒

…
Hospital !Hospital "

Client-level DP: Participating silos are protected 
(with notions of local/central/distributed DP)

Silo-specific sample-level DP: Individual records 
within silos are protected with silo-specific targets

(!!, "!)
…

Hospital !Hospital "

(!", "")
model

updates
model

updates
= protected(!, ") serverserver

…
Hospital !Hospital "

Client-level DP: Participating silos are protected 
(with notions of local/central/distributed DP)

Silo-specific sample-level DP: Individual records 
within silos are protected with silo-specific targets

(!!, "!)
…

Hospital !Hospital "

(!", "")
model

updates
model

updates
= protected(!, ") serverserver

Silo-specific sample-level DP

Definition, Instantiation, Examples 
• Each silo   sets   sample-level DP for its own dataset 
• Under FL, every silo simply runs DP-SGD when computing 

updates, w/ noise calibrated to spend   over training 

• All updates from silo   satisfy  -DP (w.r.t. silo  ’s local 
examples) against all external adversaries (e.g. the server) 

• Explored in previous work, this notion is applicable to, e.g.:

k (εk, δk)

(εk, δk)
k (εk, δk) k

1. We study silo-specific sample-level DP for cross-silo FL 

2. We find that model personalization can play a role in an emerging 
privacy & data heterogeneity cost tradeoff 

3. We show that mean-regularized multi-task learning (MR-MTL) is a very 
simple and strong baseline due to three key desiderata: noise reduction, 
smooth interpolation, and minimal privacy overhead 

4. We theoretically analyze how MR-MTL navigates the privacy-
heterogeneity cost tradeoff under federated scalar mean estimation
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