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Silo-specific sample—level DP: Individual records
within silos are protected with silo-specific targets

Definition, Instantiation, Examples
- Each silo k sets (&, 6,) sample-level DP for its own dataset

» Under FL, every silo simply runs DP-SGD when computing
updates, w/ noise calibrated to spend (&, 8;) over training

« All updates from silo k satisfy (&, 6,)-DP (w.r.t. silo ks local
examples) against all external adversaries (e.g. the server)
« Explored in previous work, this notion is applicable to, e.g.:

Voting records voting centers election
Student records across schools for a particular exam
Vaccination records clinics disease

with mean-regularization towards the server mean model:

MR-MTL & The Privacy-Heterogeneity Cost Tradeoff
« MR-MTL: Every silo k participates in FL, but maintains its own model updated
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overhead. At the optimal A* it can
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outperform both local & FedAvg.
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Regularization strength A

optimal A*, (2) the utility “bump” observed on the left, (3)
how MR-MTL compares against local & FedAvg, and (4)

how A interfaces with DP noises and data heterogeneity.

Broader open question: the privacy cost of tuning A
may already outweigh the benefits of MR-MTL.
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Shared: 0 = 0.4, K = 20, n = 200

Non-private

Private (¢ = 0.25,6 = 107°)
Private, TNB (n = —0.5,v = 0.003)
Private, TNB (1 = 0,y = 0.027)
Private, TNB (1 = 0.5,y = 0.062)
Private, TNB (n = 1,7 = 0.100)
Private, TNB (n = 2,7 = 0.171)
Private, TNB ( = 5,7 = 0.334)

~ Private, Poisson (u = 10)



