

## Best-First Search

- It exploits state description to estimate how "good" each search node is
- An evaluation function $f$ maps each node $N$ of the search tree to a real number $f(N) \geq 0$
[Traditionally, $f(N)$ is an estimated cost; so, the smaller $f(N)$, the more promising $N$ ]
- Best-first search sorts the FRINGE in increasing $f$
[Arbitrary order is assumed among nodes with equal f]

Recall that the ordering of FRINGE defines the search strategy


2

## Best-First Search

- It exploits state description to estimate how "good" each search node is
- An evaluation function $f$ maps each node $N$ of the search tree to a real number $f(N) \geq 0$ "Best" does not refer to the quality [Traditionally, $\mathrm{f}(\mathrm{N}$ of the generated path $f(N)$. the more pro $\begin{aligned} & \text { Best-first search does not generate } \\ & \text { optimal paths in general }\end{aligned}$ Best) first search sorts the FRINGE in increasing f
[Arbitrary order is assumed among nodes with equal f]


## How to construct f?

- Typically, $f(N)$ estimates:
- either the cost of a solution path through $N$ Then $f(N)=g(N)+h(N)$, where
- $g(N)$ is the cost of the path from the initial node to $N$
- $h(N)$ is an estimate of the cost of a path from $N$ to a goal node
- or the cost of a path from $N$ to a goal node Then $f(N)=h(N)$
- But there are no limitations on f. Any function of your choice is acceptable.
But will it help the search algorithm?


## Heuristic Function

- The heuristic function $h(N) \geq 0$ estimates the cost to go from $\operatorname{STATE}(\mathrm{N})$ to a goal state Its value is independent of the current search tree; it depends only on STATE(N) and the goal test GOAL?
- Example: \begin{tabular}{|l|l|l|}
\hline 5 \& \& 8 <br>
\hline 4 \& 2 \& 1 <br>
\hline 7 \& 3 \& 6 <br>
\hline

$\quad$

\hline 1 \& 2 \& 3 <br>
\hline 4 \& $5 T A T E(N)$ \& 5 <br>
\hline 7 \& 8 \& 6 <br>
\hline \multicolumn{2}{|c|}{ Goal state } <br>
\hline \multicolumn{2}{c|}{}
\end{tabular}

$h_{1}(N)=$ number of misplaced numbered tiles $=6$ [Why is it an estimate of the distance to the goal?] 7

## Other Examples

| 5 |  | 8 | 1 | 2 | 3 | 3 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 4 | 2 | 1 | 4 | 5 |  | 6 |
| 7 | 3 | 6 | 7 | 8 |  |  |
| STATE(N) |  |  |  | al |  |  |

- $h_{1}(N)=$ number of misplaced numbered tiles $=6$
- $h_{2}(N)=$ sum of the (Manhattan) distance of every numbered tile to its goal position $=2+3+0+1+3+0+3+1=13$
- $h_{3}(N)=$ sum of permutation inversions
$=n_{5}+n_{8}+n_{4}+n_{2}+n_{1}+n_{7}+n_{3}+n_{6}$
$=4+6+3+1+0+2+0+0$
$=4+6+3+1+0+2+0+0$
$=16$





## Can we prove anything?

- If the state space is infinite, in general the search is not complete
- If the state space is finite and we do not discard nodes that revisit states, in general the search is not complete
- If the state space is finite and we discard nodes that revisit states, the search is complete, but in general is not optimal


## Admissible Heuristic

- Let $h^{*}(N)$ be the cost of the optimal path from $N$ to a goal node
- The heuristic function $h(N)$ is admissible if:

$$
0 \leq h(N) \leq h^{\star}(N)
$$

- An admissible heuristic function is always optimistic!


## 8-Puzzle Heuristics

- $h_{1}(N)=$ number of misplaced tiles $=6$ is ???


## Admissible Heuristic

- Let $h^{\star}(N)$ be the cost of the optimal path from $N$ to a goal node
- The heuristic function $h(N)$ is admissible if:

$$
0 \leq h(N) \leq h^{\star}(N)
$$

- An admissible heuristic function is always optimistic!

$$
G \text { is a goal node } \rightarrow h(G)=0
$$

## 8-Puzzle Heuristics

| 5 |  | 8 |
| :--- | :--- | :--- |
| 4 | 2 | 1 |
| 7 | 3 | 6 |$\quad$| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 4 | 5 | 6 |
| 7 | 8 |  |

- $h_{1}(N)=$ number of misplaced tiles $=6$ is admissible
- $h_{2}(N)$ = sum of the (Manhattan) distances of every tile to its goal position
$=2+3+0+1+3+0+3+1=13$ is admissible
- $h_{3}(N)=$ sum of permutation inversions $=4+6+3+1+0+2+0+0=16$ is ???


## 8-Puzzle Heuristics

| 5 |  | 8 |
| :--- | :--- | :--- |
| 4 | 2 | 1 |
| 7 | 3 | 6 |
|  |  |  |
| STATE(N) |  |  |$\quad$| 1 | 2 | 3 |
| :--- | :--- | :--- |
| 4 | 5 | 6 |
| 7 | 8 |  |
| Goal state |  |  |

- $h_{1}(N)=$ number of misplaced tiles $=6$ is admissible
- $h_{2}(N)$ = sum of the (Manhattan) distances of every tile to its goal position
$=2+3+0+1+3+0+3+1=13$
is admissible
- $h_{3}(N)=$ sum of permutation inversions $=4+6+3+1+0+2+0+0=16$ is not admissible

Robot Navigation Heuristics


Cost of one horizontal/vertical step $=1$ Cost of one diagonal step $=\sqrt{2}$
$h_{1}(N)=\sqrt{\left(x_{N}-x_{g}\right)^{2}+\left(y_{N}-y_{g}\right)^{2}}$ is admissible

## Robot Navigation Heuristics



Cost of one horizontal/vertical step $=1$
Cost of one diagonal step $=\sqrt{2}$

$$
h_{2}(N)=\left|x_{N}-x_{g}\right|+\left|y_{N}-y_{g}\right| \quad \text { is ??? }
$$

## How to create an admissible $h$ ?

- An admissible heuristic can usually be seen as the cost of an optimal solution to a relaxed problem (one obtained by removing constraints)
- In robot navigation:
- The Manhattan distance corresponds to removing the obstacles
- The Euclidean distance corresponds to removing both the obstacles and the constraint that the robot moves on a grid
- More on this topic later


## A* Search <br> (most popular algorithm in AI)

1) $f(N)=g(N)+h(N)$, where:

- $g(N)=$ cost of best path found so far to $N$
- $h(N)=$ admissible heuristic function

2) for all arcs: $c\left(N, N^{\prime}\right) \geq \varepsilon>0$
3) SEARCH\#2 algorithm is used

Best-first search is then called $A^{*}$ search

## Proof (1/2)

1) If a solution exists, $A^{*}$ terminates and returns a solution

- For each node $N$ on the fringe, $f(N)=g(N)+h(N) \geq g(N) \geq d(N) \times \varepsilon$, where $d(N)$ is the depth of $N$ in the tree
As long as $A^{*}$ hasn't terminated, a node $K$ on the fringe lies on a solution path
- Since each node expansion increases the length of one path, $K$ will eventually be selected for expansion, unless a solution is found along another path



## Result \#1

$A^{*}$ is complete and optimal
[This result holds if nodes revisiting states are not discarded]

## Proof (1/2)

1) If a solution exists, $A^{*}$ terminates and returns a solution


## Proof (2/2)

2) Whenever $A^{*}$ chooses to expand a goal node, the path to this node is optimal

- $C^{\star}=$ cost of the optimal solution path

- So, $G^{\prime}$ will not be selected for expansion


## Time Limit Issue

- When a problem has no solution, $A^{*}$ runs for ever if the state space is infinite. In other cases, it may take a huge amount of time to terminate
- So, in practice, $A^{*}$ is given a time limit. If it has not found a solution within this limit, it stops. Then there is no way to know if the problem has no solution, or if more time was needed to find it
- When AI systems are "small" and solving a single search problem at a time, this is not too much of a concern.
- When AI systems become larger, they solve many search problems concurrently, some with no solution What should be the time limit for each of them? More on this in the lecture on Motion Planning ...


## Robot Navigation



## Robot Navigation

$f(N)=h(N)$, with $h(N)=$ Manhattan distance to the goal (not $A^{*}$ )

| 8 | 7 | 6 | 5 | 4 | 3 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7 |  | 5 | 4 | 3 |  |  |  |  |  | 5 |
| 6 |  |  | 3 | 2 | 1 | 0 | 1 | 2 |  | 4 |
| 7 | 6 |  |  |  |  |  |  |  |  | 5 |
| 8 | 7 | 6 | 5 | 4 | 3 | 2 | 3 | 4 | 5 | 6 |

## Robot Navigation

$f(N)=h(N)$, with $h(N)=$ Manhattan distance to the goal (not $A^{*}$ )

| 8 | 7 | 6 | 5 | 4 | 3 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 7 |  | 5 | 4 | 3 |  |  |  |  |  | 5 |
| 6 |  |  | 3 | 2 | 1 | 0 | 1 | 2 |  | 4 |
| 7 | 6 |  |  |  |  |  |  |  |  | 5 |
| 8 | 7 | 6 | 5 | 4 | 3 | 2 | 3 | 4 | 5 | 6 |

## Robot Navigation

$f(N)=g(N)+h(N)$, with $h(N)=$ Manhattan distance to goal ( $A^{*}$ )

| $8+3$ | $7+4$ | $6+3$ | $5+6$ | $4+7$ | $3+8$ | $2+9$ | $3+10$ | 4 | 5 | 6 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $7+2$ |  | $5+6$ | $4+7$ | $3+8$ |  |  |  |  |  | 5 |
| $6+1$ |  |  | 3 | $2+9$ | $1+10$ | $0+11$ | 1 | 2 |  | 4 |
| $7+0$ | $6+1$ |  |  |  |  |  |  |  |  | 5 |
| $8+1$ | $7+2$ | $6+3$ | $5+4$ | $4+5$ | $3+6$ | $2+7$ | $3+8$ | 4 | 5 | 6 |

## Best-First Search

- An evaluation function $f$ maps each node $N$ of the search tree to a real number $f(N) \geq 0$
- Best-first search sorts the FRINGE in increasing f


## Result \#1

$A^{*}$ is complete and optimal
[This result holds if nodes revisiting states are not discarded]

What to do with revisited states?


If we discard this new node, then the search algorithm expands the goal node next and returns a non-optimal solution

## A* Search

1) $f(N)=g(N)+h(N)$, where:

- $g(N)=$ cost of best path found so far to $N$
- $h(N)=$ admissible heuristic function

2) for all arcs: $c\left(N, N^{\prime}\right) \geq \varepsilon>0$
3) SEARCH\#2 algorithm is used

Best-first search is then called $A^{*}$ search

What to do with revisited states?


The heuristic $h$ is clearly admissible

## What to do with revisited states?



Instead, if we do not discard nodes revisiting states, the search terminates with an optimal solution

## But ...

If we do not discard nodes revisiting states, the size of the search tree can be exponential in the number of visited states


- It is not harmful to discard a node revisiting a state if the cost of the new path to this state is $\geq$ cost of the previous path [so, in particular, one can discard a node if it re-visits a state already visited by one of its ancestors]
- A* remains optimal, but states can still be revisited multiple times
[the size of the search tree can still be exponential in the number of visited states]
- Fortunately, for a large family of admissible heuristics - consistent heuristics - there is a much more efficient way to handle revisited states



## But ...

If we do not discard nodes revisiting states, the size of the search tree can be exponential in the number of visited states


## Consistent Heuristic

An admissible heuristic $h$ is consistent (or monotone) if for each node N and each child $\mathrm{N}^{\prime}$ of N :

$$
h(N) \leq c\left(N, N^{\prime}\right)+h\left(N^{\prime}\right)
$$


$\rightarrow$ Intuition: a consistent heuristics becomes more precise as we get deeper in the search tree

## Consistent Heuristic (alternative definition)

A heuristic $h$ is consistent (or monotone) if

1) for each node $N$ and each child $N$ ' of $N$ :
$h(N) \leq c\left(N, N^{\prime}\right)+h\left(N^{\prime}\right)$
2) for each goal node $G$ :
$h(G)=0$
A consistent heuristic

is also admissible
(triangle inequality)

## Admissibility and Consistency

- A consistent heuristic is also admissible
- An admissible heuristic may not be consistent, but many admissible heuristics are consistent



## Result \#2

If $h$ is consistent, then whenever $A^{*}$ expands a node, it has already found an optimal path to this node's state

## Proof (1/2)

1) Consider a node N and its child $\mathrm{N}^{\prime}$

Since $h$ is consistent: $h(N) \leq c\left(N, N^{\prime}\right)+h\left(N^{\prime}\right)$
$f(N)=g(N)+h(N) \leq g(N)+c(N, N)+h(N)=f\left(N^{\prime}\right)$
So, $f$ is non-decreasing along any path

## Proof (2/2)

2) If a node $K$ is selected for expansion, then any other node $N$ in the fringe verifies $f(N) \geq f(K)$


If one node N lies on another path to the state of K , the cost of this other path is no smaller than that of the path to K:
$f\left(N^{\prime}\right) \geq f(N) \geq f(K)$ and $h\left(N^{\prime}\right)=h(K)$
So, $g\left(N^{\prime}\right) \geq g(K)$


## Revisited States with Consistent Heuristic

- When a node is expanded, store its state into CLOSED
- When a new node $N$ is generated:
- If $\operatorname{statE}(N)$ is in CLOSED, discard $N$
- If there exists a node $\mathrm{N}^{\prime}$ in the fringe such that $\operatorname{STATE}\left(\mathrm{N}^{\prime}\right)=\operatorname{STATE}(\mathrm{N})$, discard the node $-N$ or $N^{\prime}$ - with the largest $f$ (or, equivalently, g)


## For example: $h \equiv 0$

- It is consistent (hence, admissible)!
- $A^{*}$ with $h=0$ is uniform-cost search
- Breadth-first and uniform-cost are particular cases of $A^{*}$


## Heuristic Accuracy

Let $h_{1}$ and $h_{2}$ be two consistent heuristics such that for all nodes N :

$$
h_{1}(N) \leq h_{2}(N)
$$

$h_{2}$ is said to be more accurate (or more informed) than $h_{1}$


## Result \#3

- Let $h_{2}$ be more accurate than $h_{1}$
- Let $A_{1}{ }^{*}$ be $A^{*}$ using $h_{1}$ and $A_{2}{ }^{*}$ be $A^{*}$ using $h_{2}$
- Whenever a solution exists, all the nodes expanded by $A_{2}{ }^{*}$, except possibly for some nodes such that
$f_{1}(N)=f_{2}(N)=C^{\star}$ (cost of optimal solution) are also expanded by $A_{1}{ }^{*}$


## Effective Branching Factor

- It is used as a measure the effectiveness of a heuristic
- Let $n$ be the total number of nodes expanded by $A^{*}$ for a particular problem and $d$ the depth of the solution
- The effective branching factor $b^{*}$ is defined by $n=1+b^{\star}+\left(b^{\star}\right)^{2}+\ldots+\left(b^{\star}\right)^{d}$


## How to create good heuristics?

- By solving relaxed problems at each node
- In the 8 -puzzle, the sum of the distances of each tile to its goal position ( $h_{2}$ ) corresponds to solving 8 simple problems:

$\mathrm{d}_{\mathrm{i}}$ is the length of the
shortest path to move
tile i to its goal position,
ignoring the other tiles,
e.g., $\mathrm{d}_{5}=2$
$\mathrm{~h}_{2}=\sum_{\mathrm{i}=1, \ldots 8} \mathrm{~d}_{\mathrm{i}}$
- It ignores negative interactions among tiles


## Proof

- $C^{\star}=h^{\star}$ (initial-node) [cost of optimal solution]
- Every node $N$ such that $f(N)<C^{\star}$ is eventually expanded. No node $N$ such that $f(N)>C^{\star}$ is ever expanded
- Every node $N$ such that $h(N)<C^{\star}-g(N)$ is eventually expanded. So, every node $N$ such that $h_{2}(N)<C^{\star}-g(N)$ is expanded by $A_{2}{ }^{\star}$. Since $h_{1}(N) \leq h_{2}(N), N$ is also expanded by $A_{1}{ }^{*}$
- If there are several nodes $N$ such that $f_{1}(N)=f_{2}(N)=$ $C^{\star}$ (such nodes include the optimal goal nodes, if there exists a solution), $A_{1}{ }^{*}$ and $A_{2}{ }^{*}$ may or may not expand them in the same order (until one goal node is expanded)


## Experimental Results

(see R\&N for details)

- 8-puzzle with:
- $h_{1}=$ number of misplaced tiles
- $h_{2}$ = sum of distances of tiles to their goal positions
- Random generation of many problem instances
- Average effective branching factors (number of expanded nodes):

| d | IDS | $A_{1}{ }^{\star}$ | $A_{2}{ }^{\star}$ |
| :--- | :--- | :--- | :--- |
| 2 | 2.45 | 1.79 | 1.79 |
| 6 | 2.73 | 1.34 | 1.30 |
| 12 | $2.78(3,644,035)$ | $1.42(227)$ | $1.24(73)$ |
| 16 | -- | 1.45 | 1.25 |
| 20 | -- | 1.47 | 1.27 |
| 24 | -- | $1.48(39,135)$ | $1.26(1,641)$ |

## Can we do better?

- For example, we could consider two more complex relaxed problems:

- $\rightarrow \mathrm{h}=\mathrm{d}_{1234}+\mathrm{d}_{5678}$ [disjoint pattern heuristic]


## Can we do better?

- For example, we could consider two more complex relaxed problems:
$d_{1234}=$ length of the
shortest path to move
tiles 1, 2, 3, and 4 to
their goal positions,
ignoring the other tiles

- $\rightarrow h=d_{1234}+d_{5678}$ [disjoint pattern heuristic]
- How to compute $d_{1234}$ and $d_{5678}$ ?


## Can we do better?

- For example, we could consider two more complex relaxed problems:

$\underset{\text { sil }}{\text { sil }} \rightarrow$ Several order-of-magnitude speedups for the 15- and 24-puzzle (see R\&N)

- $\rightarrow h=d_{1234}+d_{5678}$ [disjoint pattern heuristic]
- These distances are pre-computed and stored [Each requires generating a tree of 3,024 nodes/states (breadth-69 first search)]





## Advantages/Drawbacks of IDA*

- Advantages:
- Still complete and optimal
- Requires less memory than A* $^{*}$
- Avoid the overhead to sort the fringe
- Drawbacks:
- Can't avoid revisiting states not on the current path
- Available memory is poorly used
$(\rightarrow$ memory-bounded search, see R\&N p. 101-104)


## Local Search

- Light-memory search method
- No search tree; only the current state is represented!
- Only applicable to problems where the path is irrelevant (e.g., 8-queen), unless the path is encoded in the state
- Many similarities with optimization techniques


## Application: 8-Queen

1) Pick an initial state $S$ at random with one queen in each column
2) Repeat $k$ times:
a) If GOAL?(S) then return $S$
b) Pick an attacked queen $Q$ at random
c) Move $Q$ in its column to minimize the number of attacking queens $\rightarrow$ new $S$ [min-conflicts heuristic]
3) Return failure


## Steepest Descent

1) $S \leftarrow$ initial state
2) Repeat:
a) $\mathrm{S}^{\prime} \leftarrow \arg \min _{S^{\prime} \in \operatorname{SUCCESSORS}(S)}\left\{\mathrm{h}\left(\mathrm{S}^{\prime}\right)\right\}$
b) if GOAL?(S') return $\mathrm{S}^{\prime}$
c) if $h\left(S^{\prime}\right)<h(S)$ then $S \leftarrow S^{\prime}$ else return failure
may easily get stuck in local minima
$\rightarrow$ Random restart (as in n-queen example)
$\rightarrow$ Monte Carlo descent

## Steepest Descent

1) $S \leftarrow$ initial state
2) Repeat:
a) $\mathrm{S}^{\prime} \leftarrow \arg \min _{S^{\prime} \in S U C C E S S O R S(S)}\left\{\mathrm{h}\left(S^{\prime}\right)\right\}$
b) if GOAL?(S') return $S^{\prime}$
c) if $h\left(S^{\prime}\right)<h(S)$ then $S \leqslant S^{\prime}$ else return failure

Similar to:

- hill climbing with -h
- gradient descent over continuous space


## Application: 8-Queen

$R$ Why does it work ???

1) 2) There are many goal states that are
well-distributed over the state space
1) If no solution has been found after a few steps, it's better to start it all over again. Building a search tree would be much less efficient because of the high branching factor
2) Running time almost independent of the number of queens


## Monte Carlo Descent

1) $S \leftarrow$ initial state
2) Repeat $k$ times:
a) If GOAL?(S) then return $S$
b) $S^{\prime} \leftarrow$ successor of $S$ picked at random
c) if $h\left(S^{\prime}\right) \leq h(S)$ then $S \leftarrow S^{\prime}$
d) else

- $\Delta h=h\left(S^{\prime}\right)-h(S)$
- with probability $\sim \exp (-\Delta h / T)$, where $T$ is called the "temperature", do: $S \leftarrow S^{\prime}$ [Metropolis criterion]

3) Return failure

Simulated annealing lowers $T$ over the $k$ iterations. It starts with a large $T$ and slowly decreases $T$

## "Parallel" Local Search Techniques

They perform several local searches concurrently, but not independently:

- Beam search
- Genetic algorithms

See R\&N, pages 115-119


## When to Use Search Techniques?

1) The search space is small, and

- No other technique is available, or
- Developing a more efficient technique is not worth the effort

2) The search space is large, and

- No other available technique is available, and
- There exist "good" heuristics

