
1

Heuristic (Informed)
Search

(Wh t t h tl)

1

(Where we try to choose smartly)

R&N: Chap. 4, Sect. 4.1–3

Search Algorithm #2

SEARCH#2
1. INSERT(initial-node,FRINGE)

Recall that the ordering
of FRINGE defines the
search strategy

2

2. Repeat:
a. If empty(FRINGE) then return failure
b. N REMOVE(FRINGE)
c. s STATE(N)
d. If GOAL?(s) then return path or goal state
e. For every state s’ in SUCCESSORS(s)

i. Create a node N’ as a successor of N
ii. INSERT(N’,FRINGE)

Best-First Search
It exploits state description to estimate
how “good” each search node is
An evaluation function f maps each node
N of the search tree to a real number

3

f(N) ≥ 0
[Traditionally, f(N) is an estimated cost; so, the smaller
f(N), the more promising N]

Best-first search sorts the FRINGE in
increasing f
[Arbitrary order is assumed among nodes with equal f]

Best-First Search
It exploits state description to estimate
how “good” each search node is
An evaluation function f maps each node
N of the search tree to a real number

“B t” d t f t th lit

4

f(N) ≥ 0
[Traditionally, f(N) is an estimated cost; so, the smaller
f(N), the more promising N]

Best-first search sorts the FRINGE in
increasing f
[Arbitrary order is assumed among nodes with equal f]

“Best” does not refer to the quality
of the generated path
Best-first search does not generate
optimal paths in general

Typically, f(N) estimates:
• either the cost of a solution path through N

Then f(N) = g(N) + h(N), where
– g(N) is the cost of the path from the initial node to N
– h(N) is an estimate of the cost of a path from N to a goal node

How to construct f?

5

• or the cost of a path from N to a goal node
Then f(N) = h(N) Greedy best-search

But there are no limitations on f. Any function
of your choice is acceptable.
But will it help the search algorithm?

Typically, f(N) estimates:
• either the cost of a solution path through N

Then f(N) = g(N) + h(N), where
– g(N) is the cost of the path from the initial node to N
– h(N) is an estimate of the cost of a path from N to a goal node

How to construct f?

6

• or the cost of a path from N to a goal node
Then f(N) = h(N)

But there are no limitations on f. Any function
of your choice is acceptable.
But will it help the search algorithm?

Heuristic function

2

The heuristic function h(N) ≥ 0 estimates
the cost to go from STATE(N) to a goal state
Its value is independent of the current
search tree; it depends only on STATE(N)
and the goal test GOAL?

Heuristic Function

7

Example:

h1(N) = number of misplaced numbered tiles = 6
[Why is it an estimate of the distance to the goal?]

14

7

5

2

63

8

STATE(N)

64

7

1

5

2

8

3

Goal state

Other Examples

14

7

5

2

63

8

STATE(N)

64

7

1

5

2

8

3

Goal state

8

h1(N) = number of misplaced numbered tiles = 6
h2(N) = sum of the (Manhattan) distance of

every numbered tile to its goal position
= 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13

h3(N) = sum of permutation inversions
= n5 + n8 + n4 + n2 + n1 + n7 + n3 + n6
= 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0
= 16

8-Puzzle

5
3

4

3 4
3

f(N) = h(N) = number of misplaced numbered tiles

9

4

5

3

4

4

2 1

2

0

4

3

The white tile is the empty tile

1+5
3+3

3+4

2+3

8-Puzzle
f(N) = g(N) + h(N)

with h(N) = number of misplaced numbered tiles

10

0+4

1+5

1+3

3+4

3+4

3+2 4+1

5+2

5+0

2+4

2+3

6 5

8-Puzzle
f(N) = h(N) = Σ distances of numbered tiles to their goals

11

5

6

4

4

2 1

2

0

5

3

Robot Navigation

yN
N

12

xN xg

yg

2 2
g g1 N Nh (N) = (x -x) +(y -y) (L2 or Euclidean distance)

h2(N) = |xN-xg| + |yN-yg| (L1 or Manhattan distance)

3

Best-First → Efficiency

Local-minimum problem

13

f(N) = h(N) = straight distance to the goal

Can we prove anything?
If the state space is infinite, in general the
search is not complete

If the state space is finite and we do not
discard nodes that revisit states in general

14

discard nodes that revisit states, in general
the search is not complete

If the state space is finite and we discard
nodes that revisit states, the search is
complete, but in general is not optimal

Admissible Heuristic

Let h*(N) be the cost of the optimal path
from N to a goal node

The heuristic function h(N) is admissible

15

if:
0 ≤ h(N) ≤ h*(N)

An admissible heuristic function is always
optimistic !

Admissible Heuristic

Let h*(N) be the cost of the optimal path
from N to a goal node

The heuristic function h(N) is admissible

16

if:
0 ≤ h(N) ≤ h*(N)

An admissible heuristic function is always
optimistic !

G is a goal node h(G) = 0

h (N) = number of misplaced tiles = 6

8-Puzzle Heuristics

14

7

5

2

63

8

STATE(N)

64

7

1

5

2

8

3

Goal state

17

h1(N) = number of misplaced tiles = 6
is ???
h2(N) = sum of the (Manhattan) distances of

every tile to its goal position
= 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13

is admissible
h3(N) = sum of permutation inversions

= 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0 = 16
is not admissible

h (N) = number of misplaced tiles = 6

8-Puzzle Heuristics

14

7

5

2

63

8

STATE(N)

64

7

1

5

2

8

3

Goal state

18

h1(N) = number of misplaced tiles = 6
is admissible
h2(N) = sum of the (Manhattan) distances of

every tile to its goal position
= 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13

is ???
h3(N) = sum of permutation inversions

= 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0 = 16
is not admissible

4

h (N) = number of misplaced tiles = 6

8-Puzzle Heuristics

14

7

5

2

63

8

STATE(N)

64

7

1

5

2

8

3

Goal state

19

h1(N) = number of misplaced tiles = 6
is admissible
h2(N) = sum of the (Manhattan) distances of

every tile to its goal position
= 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13

is admissible
h3(N) = sum of permutation inversions

= 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0 = 16
is ???

h (N) = number of misplaced tiles = 6

8-Puzzle Heuristics

14

7

5

2

63

8

STATE(N)

64

7

1

5

2

8

3

Goal state

20

h1(N) = number of misplaced tiles = 6
is admissible
h2(N) = sum of the (Manhattan) distances of

every tile to its goal position
= 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13

is admissible
h3(N) = sum of permutation inversions

= 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0 = 16
is not admissible

Robot Navigation Heuristics

21

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = 2

2 2
g g1 N Nh (N) = (x -x) +(y -y) is admissible

Robot Navigation Heuristics

22

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = 2

h2(N) = |xN-xg| + |yN-yg| is ???

Robot Navigation Heuristics

23

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = 2

h2(N) = |xN-xg| + |yN-yg| is admissible if moving along
diagonals is not allowed, and
not admissible otherwiseh*(I) = 4√2

h2(I) = 8

How to create an admissible h?

An admissible heuristic can usually be seen as
the cost of an optimal solution to a relaxed
problem (one obtained by removing constraints)

In robot navigation:

24

g
• The Manhattan distance corresponds to removing the

obstacles
• The Euclidean distance corresponds to removing both

the obstacles and the constraint that the robot
moves on a grid

More on this topic later

5

A* Search
(most popular algorithm in AI)

1) f(N) = g(N) + h(N), where:
• g(N) = cost of best path found so far to N
• h(N) = admissible heuristic function

25

2) for all arcs: c(N,N’) ≥ ε > 0

3) SEARCH#2 algorithm is used

Best-first search is then called A* search

Result #1

A* is complete and optimal

[This result holds if nodes revisiting
states are not discarded]

26

states are not discarded]

Proof (1/2)
1) If a solution exists, A* terminates and

returns a solution

- For each node N on the fringe,
f(N) = g(N)+h(N) ≥ g(N) ≥ d(N)×ε,

h d(N) h d h f N h

27

where d(N) is the depth of N in the tree

Proof (1/2)
1) If a solution exists, A* terminates and

returns a solution

- For each node N on the fringe,
f(N) = g(N)+h(N) ≥ g(N) ≥ d(N)×ε,

h d(N) h d h f N h

28

where d(N) is the depth of N in the tree

- As long as A* hasn’t terminated, a node K
on the fringe lies on a solution path

K

Proof (1/2)
1) If a solution exists, A* terminates and

returns a solution

- For each node N on the fringe,
f(N) = g(N)+h(N) ≥ g(N) ≥ d(N)×ε,

h d(N) h d h f N h

29

where d(N) is the depth of N in the tree

- As long as A* hasn’t terminated, a node K
on the fringe lies on a solution path

- Since each node expansion increases the
length of one path, K will eventually be
selected for expansion, unless a solution is
found along another path

K

Proof (2/2)
2) Whenever A* chooses to expand a goal

node, the path to this node is optimal
- C*= cost of the optimal solution path

- G’: non-optimal goal node in the fringe

30

K

f(G’) = g(G’) + h(G’) = g(G’) > C*

- A node K in the fringe lies on an optimal
path:

f(K) = g(K) + h(K) ≤ C*

- So, G’ will not be selected for expansion

G’

6

Time Limit Issue
When a problem has no solution, A* runs for ever if
the state space is infinite. In other cases, it may take
a huge amount of time to terminate
So, in practice, A* is given a time limit. If it has not
found a solution within this limit, it stops. Then there
is no way to know if the problem has no solution, or if
more time was needed to find it

31

more time was needed to find it
When AI systems are “small” and solving a single
search problem at a time, this is not too much of a
concern.
When AI systems become larger, they solve many
search problems concurrently, some with no solution.
What should be the time limit for each of them?
More on this in the lecture on Motion Planning ...

8-Puzzle

1+5
3+3

3+4

2+3

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

32

0+4

1+5

1+3

3+4

3+4

3+2 4+1

5+2

5+0

2+4

2+3

Robot Navigation

33

Robot Navigation

58 7 46 23 3 54 6

f(N) = h(N), with h(N) = Manhattan distance to the goal
(not A*)

34

0 211

7

3

7

7

6 3 2

8

6

45

36 5 24 43 5

5

6

4

5

Robot Navigation

58 7 46 23 3 54 6

f(N) = h(N), with h(N) = Manhattan distance to the goal
(not A*)

35

0 211

7

3

7

7

6 3 2

8

6

45

36 5 24 43 5

5

6

4

57

0

Robot Navigation

f(N) = g(N)+h(N), with h(N) = Manhattan distance to goal
(A*)

58 7 46 23 3 54 68+38+3 7+47+4 6+56+3 5+65+6 4+74+7 3+83+8 2+92+9 3+10

36

0 211

7

3

7

7

6 3 2

8

6

45

36 5 24 43 5

5

6

4

57+0

6+1

6+1

8+1

7+0

7+2

6+1

7+2

6+1

8+1

7+2

7+2 6+36+3 5+45+4 4+54+5 3+63+6 2+7

5+6

2+7 3+8

4+7 3+8

2+9

3+8

2+9 1+101+10 0+110+11

7

Best-First Search

An evaluation function f maps each node
N of the search tree to a real number
f(N) ≥ 0

37

f(N) ≥ 0
Best-first search sorts the FRINGE in
increasing f

A* Search

1) f(N) = g(N) + h(N), where:
• g(N) = cost of best path found so far to N
• h(N) = admissible heuristic function

38

2) for all arcs: c(N,N’) ≥ ε > 0

3) SEARCH#2 algorithm is used

Best-first search is then called A* search

Result #1

A* is complete and optimal

[This result holds if nodes revisiting
states are not discarded]

39

states are not discarded]

What to do with revisited states?

c = 1 2

h = 100 1 The heuristic h is

40

100

21

0

90
clearly admissible

What to do with revisited states?

c = 1 2

h = 100 1 f = 1+100 2+1

41

100

21

0

90

104

4+90

?
If we discard this new node, then the search
algorithm expands the goal node next and
returns a non-optimal solution

1 2

100 1 1+100 2+1

What to do with revisited states?

42

100

21

0

90

104

4+902+90

102

Instead, if we do not discard nodes revisiting
states, the search terminates with an optimal
solution

8

But ...
If we do not discard nodes revisiting
states, the size of the search tree can be
exponential in the number of visited states

43

1

2

11

1

2

1

1

1+1 1+1

2+1 2+1 2+1 2+1

4 4 4 4 4 4 4 4

But ...
If we do not discard nodes revisiting
states, the size of the search tree can be
exponential in the number of visited states

44

1

2

11

1

2

1

1

2n+1 states

1+1 1+1

2+1 2+1 2+1 2+1

4 4 4 4 4 4 4 4

O(2n) nodes

It is not harmful to discard a node revisiting
a state if the cost of the new path to this
state is ≥ cost of the previous path
[so, in particular, one can discard a node if it re-visits
a state already visited by one of its ancestors]

A* remains optimal, but states can still be re-
visited multiple times

45

visited multiple times
[the size of the search tree can still be exponential in
the number of visited states]

Fortunately, for a large family of admissible
heuristics – consistent heuristics – there is a
much more efficient way to handle revisited
states

Consistent Heuristic
An admissible heuristic h is consistent (or
monotone) if for each node N and each
child N’ of N:

h(N) ≤ c(N,N’) + h(N’)
N

c(N,N’)

46

(triangle inequality)

N’ h(N)

h(N’)

Intuition: a consistent heuristics becomes
more precise as we get deeper in the search tree

Consistency Violation

N
c(N,N’)

10

If h tells that N is
100 units from the
goal, then moving
from N along an arc

 10

47

N’ h(N)
=100

h(N’)
=10

=10

(triangle inequality)

costing 10 units
should not lead to a
node N’ that h
estimates to be 10
units away from the
goal

Consistent Heuristic
(alternative definition)

A heuristic h is consistent (or monotone) if
1) for each node N and each child N’ of N:

h(N) ≤ c(N,N’) + h(N’) N
c(N,N’)

48

2) for each goal node G:
h(G) = 0

(triangle inequality)

N’ h(N)

h(N’)

(,)

A consistent heuristic
is also admissible

9

A consistent heuristic is also admissible

An admissible heuristic may not be
nsist nt b t m n dmissibl h isti s

Admissibility and Consistency

49

consistent, but many admissible heuristics
are consistent

8-Puzzle

1 2 3

4 5 6

7 8

12

3

4

5

67

8

N

50

STATE(N) goal

h1(N) = number of misplaced tiles
h2(N) = sum of the (Manhattan) distances

of every tile to its goal position
are both consistent (why?)

N

N’ h(N)

h(N’)

c(N,N’)

h(N) ≤ c(N,N’) + h(N’)

Robot Navigation

N

N’ h(N)

h(N’)

c(N,N’)

51

Cost of one horizontal/vertical step = 1
Cost of one diagonal step = 2

2 2
g g1 N Nh (N) = (x -x) +(y -y)

h2(N) = |xN-xg| + |yN-yg|
is consistent

is consistent if moving along
diagonals is not allowed, and
not consistent otherwise

h(N) ≤ c(N,N’) + h(N’)

If h is consistent, then whenever A*
expands a node, it has already found
an optimal path to this node’s state

Result #2

52

Proof (1/2)
1) Consider a node N and its child N’

Since h is consistent: h(N) ≤ c(N,N’)+h(N’)

f(N) = g(N)+h(N) ≤ g(N)+c(N,N’)+h(N’) = f(N’)
So, f is non-decreasing along any path

N

N’

53

2) If a node K is selected for expansion, then any other
node N in the fringe verifies f(N) ≥ f(K)

Proof (2/2)

54

If one node N lies on another path to the state of K,
the cost of this other path is no smaller than that of
the path to K:
f(N’) ≥ f(N) ≥ f(K) and h(N’) = h(K)
So, g(N’) ≥ g(K)

K N

N’S

10

2) If a node K is selected for expansion, then any other
node N in the fringe verifies f(N) ≥ f(K)

Proof (2/2)
If h is consistent, then whenever A* expands a
node, it has already found an optimal path to this
node’s state

Result #2

55

If one node N lies on another path to the state of K,
the cost of this other path is no smaller than that of
the path to K:
f(N’) ≥ f(N) ≥ f(K) and h(N’) = h(K)
So, g(N’) ≥ g(K)

K N

N’S

Implication of Result #2

The path to N
is the optimal
path to S

56

N N1
S S1

N2

N2 can be
discarded

Revisited States with
Consistent Heuristic

When a node is expanded, store its state
into CLOSED
When a new node N is generated:

57

• If STATE(N) is in CLOSED, discard N
• If there exists a node N’ in the fringe

such that STATE(N’) = STATE(N),
discard the node – N or N’ – with the
largest f (or, equivalently, g)

Is A* with some consistent
heuristic all that we need?

No !
There are very dumb consistent heuristic
f i

58

functions

For example: h ≡ 0

It is consistent (hence, admissible) !
A* with h≡0 is uniform-cost search
B dth fi t d if t

59

Breadth-first and uniform-cost are
particular cases of A*

Heuristic Accuracy
Let h1 and h2 be two consistent heuristics such
that for all nodes N:

h1(N) ≤ h2(N)
h2 is said to be more accurate (or more informed)

60

2 (f)
than h1

h1(N) = number of misplaced
tiles
h2(N) = sum of distances of
every tile to its goal position

h2 is more accurate than h1

14

7

5

2

63

8

STATE(N)

64

7

1

5

2

8

3

Goal state

11

Result #3

Let h2 be more accurate than h1

Let A1* be A* using h1
and A2* be A* using h2

Wh l ti i t ll th

61

Whenever a solution exists, all the
nodes expanded by A2*, except possibly
for some nodes such that

f1(N) = f2(N) = C* (cost of optimal solution)
are also expanded by A1*

Proof
C* = h*(initial-node) [cost of optimal solution]

Every node N such that f(N) < C* is eventually
expanded. No node N such that f(N) > C* is ever
expanded
Every node N such that h(N) < C*−g(N) is eventually

62

y () g() y
expanded. So, every node N such that h2(N) < C*−g(N)
is expanded by A2*. Since h1(N) ≤ h2(N), N is also
expanded by A1*

If there are several nodes N such that f1(N) = f2(N) =
C* (such nodes include the optimal goal nodes, if there
exists a solution), A1* and A2* may or may not expand
them in the same order (until one goal node is
expanded)

Effective Branching Factor

It is used as a measure the effectiveness
of a heuristic
Let n be the total number of nodes
expanded by A* for a particular problem

63

expanded by A* for a particular problem
and d the depth of the solution
The effective branching factor b* is
defined by n = 1 + b* + (b*)2 +...+ (b*)d

Experimental Results
(see R&N for details)

8-puzzle with:
h1 = number of misplaced tiles
h2 = sum of distances of tiles to their goal positions

Random generation of many problem instances
Average effective branching factors (number of

d d d)

64

expanded nodes):
d IDS A1* A2*
2 2.45 1.79 1.79
6 2.73 1.34 1.30
12 2.78 (3,644,035) 1.42 (227) 1.24 (73)
16 -- 1.45 1.25
20 -- 1.47 1.27
24 -- 1.48 (39,135) 1.26 (1,641)

By solving relaxed problems at each node
In the 8-puzzle, the sum of the distances of
each tile to its goal position (h2) corresponds to
solving 8 simple problems:

How to create good heuristics?

5 8 1 2 3 d is th l th f th

65It ignores negative interactions among tiles

14

7

2

63

64

7

5

8

5

5

di is the length of the
shortest path to move
tile i to its goal position,
ignoring the other tiles,
e.g., d5 = 2

h2 = Σi=1,...8 di

For example, we could consider two more complex
relaxed problems:

Can we do better?

14

7

5

2

63

8

64

7

1

5

2

8

3
d1234 = length of the
shortest path to move
tiles 1, 2, 3, and 4 to
their goal positions d5678

66

h = d1234 + d5678 [disjoint pattern heuristic]

3

2 14 4

1 2 3

their goal positions,
ignoring the other tiles

6

7

5

87

5

6

8

12

For example, we could consider two more complex
relaxed problems:

Can we do better?

14

7

5

2

63

8

64

7

1

5

2

8

3
d1234 = length of the
shortest path to move
tiles 1, 2, 3, and 4 to
their goal positions d5678

67

h = d1234 + d5678 [disjoint pattern heuristic]
How to compute d1234 and d5678?

3

2 14 4

1 2 3

their goal positions,
ignoring the other tiles

6

7

5

87

5

6

8

For example, we could consider two more complex
relaxed problems:

Can we do better?

14

7

5

2

63

8

64

7

1

5

2

8

3
d1234 = length of the
shortest path to move
tiles 1, 2, 3, and 4 to
their goal positions d5678

68

h = d1234 + d5678 [disjoint pattern heuristic]
These distances are pre-computed and stored
[Each requires generating a tree of 3,024 nodes/states (breadth-
first search)]

3

2 14 4

1 2 3

their goal positions,
ignoring the other tiles

6

7

5

87

5

6

8

For example, we could consider two more complex
relaxed problems:

Can we do better?

14

7

5

2

63

8

64

7

1

5

2

8

3
d1234 = length of the
shortest path to move
tiles 1, 2, 3, and 4 to
their goal positions d5678

Several order-of-magnitude speedups
for the 15- and 24-puzzle (see R&N)

69

h = d1234 + d5678 [disjoint pattern heuristic]
These distances are pre-computed and stored
[Each requires generating a tree of 3,024 nodes/states (breadth-
first search)]

3

2 14 4

1 2 3

6

7

5

87

5

6

8

their goal positions,
ignoring the other tiles

for the 15- and 24-puzzle (see R&N)

On Completeness and Optimality
A* with a consistent heuristic function has
nice properties: completeness, optimality, no
need to revisit states
Theoretical completeness does not mean
“practical” completeness if you must wait too

70

p p y
long to get a solution (remember the time
limit issue)
So, if one can’t design an accurate consistent
heuristic, it may be better to settle for a
non-admissible heuristic that “works well in
practice”, even through completeness and
optimality are no longer guaranteed

Iterative Deepening A* (IDA*)
Idea: Reduce memory requirement of
A* by applying cutoff on values of f
Consistent heuristic function h
Algorithm IDA*:

71

Algorithm IDA :
1. Initialize cutoff to f(initial-node)
2. Repeat:

a. Perform depth-first search by expanding all
nodes N such that f(N) ≤ cutoff

b. Reset cutoff to smallest value f of non-
expanded (leaf) nodes

8-Puzzle
f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

72

4

6

Cutoff=4

13

8-Puzzle
f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

73

4

4

6

Cutoff=4

6

8-Puzzle
f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

74

4

4

6

Cutoff=4

6

5

8-Puzzle

5

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

75

4

4

6

Cutoff=4

6

5

8-Puzzle

56

f(N) = g(N) + h(N)
with h(N) = number of misplaced tiles

76

4

4

6

Cutoff=4

6

5

8-Puzzle
f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

77

4

6

Cutoff=5

8-Puzzle
f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

78

4

4

6

Cutoff=5

6

14

8-Puzzle
f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

79

4

4

6

Cutoff=5

6

5

8-Puzzle
f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

80

4

4

6

Cutoff=5

6

5

7

8-Puzzle
f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

81

4

4

6

Cutoff=5

6

5

7

5

8-Puzzle
f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

82

4

4

6

Cutoff=5

6

5

7

5 5

8-Puzzle
f(N) = g(N) + h(N)

with h(N) = number of misplaced tiles

83

4

4

6

Cutoff=5

6

5

7

5 5

5

Advantages/Drawbacks of IDA*

Advantages:
• Still complete and optimal
• Requires less memory than A*
• Avoid the overhead to sort the fringe

84

• Avoid the overhead to sort the fringe
Drawbacks:
• Can’t avoid revisiting states not on the

current path
• Available memory is poorly used

(memory-bounded search, see R&N p. 101-104)

15

Local Search

Light-memory search method
No search tree; only the current state
is represented!
O l li bl t bl h th

85

Only applicable to problems where the
path is irrelevant (e.g., 8-queen), unless
the path is encoded in the state
Many similarities with optimization
techniques

Steepest Descent
1) S initial state
2) Repeat:

a) S’ arg minS’∈SUCCESSORS(S){h(S’)}
b) if GOAL?(S’) return S’

86

c) if h(S’) < h(S) then S S’ else return failure

Similar to:
- hill climbing with –h
- gradient descent over continuous space

Application: 8-Queen
Repeat n times:
1) Pick an initial state S at random with one queen in each column
2) Repeat k times:

a) If GOAL?(S) then return S
b) Pick an attacked queen Q at random
c) Move Q in its column to minimize the number of attacking

queens new S [min-conflicts heuristic]q [m f]
3) Return failure

1
2

3
3
2
2
3

2
2

2
2

2
0
2

Application: 8-Queen
Repeat n times:
1) Pick an initial state S at random with one queen in each column
2) Repeat k times:

a) If GOAL?(S) then return S
b) Pick an attacked queen Q at random
c) Move Q it in its column to minimize the number of attacking

Why does it work ???
1) There are many goal states that are

well-distributed over the state space
2) If no solution has been found after a few

steps, it’s better to start it all over again.
B ildi h t ld b h l queens is minimum new S

1
2

3
3
2
2
3

2
2

2
2

2
0
2

Building a search tree would be much less
efficient because of the high branching
factor

3) Running time almost independent of the
number of queens

Steepest Descent
1) S initial state
2) Repeat:

a) S’ arg minS’∈SUCCESSORS(S){h(S’)}
b) if GOAL?(S’) return S’

89

c) if h(S’) < h(S) then S S’ else return failure

may easily get stuck in local minima
Random restart (as in n-queen example)
Monte Carlo descent

Monte Carlo Descent
1) S initial state
2) Repeat k times:

a) If GOAL?(S) then return S
b) S’ successor of S picked at random
c) if h(S’) ≤ h(S) then S S’

90

d) else
- Δh = h(S’)-h(S)
- with probability ~ exp(−Δh/T), where T is called the

“temperature”, do: S S’ [Metropolis criterion]

3) Return failure

Simulated annealing lowers T over the k iterations.
It starts with a large T and slowly decreases T

16

“Parallel” Local Search
Techniques

They perform several local searches
concurrently, but not independently:

Beam search

91

Genetic algorithms

See R&N, pages 115-119

Search problems

Blind search

Heuristic search:

92

Heuristic search:
best-first and A*

Construction of heuristics Local searchVariants of A*

When to Use Search Techniques?

1) The search space is small, and
• No other technique is available, or
• Developing a more efficient technique is not

worth the effort

93

worth the effort

2) The search space is large, and
• No other available technique is available, and
• There exist “good” heuristics

