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Heuristic (Informed) 
Search

(Wh   t  t  h  tl ) 
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(Where we try to choose smartly) 

R&N: Chap. 4, Sect. 4.1–3

Search Algorithm #2

SEARCH#2
1. INSERT(initial-node,FRINGE)

Recall that the ordering
of FRINGE defines the 
search strategy
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2. Repeat:
a. If empty(FRINGE) then return failure
b. N REMOVE(FRINGE)
c. s STATE(N)
d. If GOAL?(s) then return path or goal state
e. For every state s’ in SUCCESSORS(s)

i. Create a node N’ as a successor of N
ii. INSERT(N’,FRINGE)

Best-First Search
It exploits state description to estimate 
how “good” each search node is
An evaluation function f maps each node 
N of the search tree to a real number 

3

f(N) ≥ 0 
[Traditionally, f(N) is an estimated cost; so, the smaller 
f(N), the more promising N]

Best-first search sorts the FRINGE in 
increasing f
[Arbitrary order is assumed among nodes with equal f]

Best-First Search
It exploits state description to estimate 
how “good” each search node is
An evaluation function f maps each node 
N of the search tree to a real number 

“B t” d  t f  t  th  lit  
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f(N) ≥ 0 
[Traditionally, f(N) is an estimated cost; so, the smaller 
f(N), the more promising N]

Best-first search sorts the FRINGE in 
increasing f
[Arbitrary order is assumed among nodes with equal f]

“Best” does not refer to the quality 
of the generated path
Best-first search does not generate 
optimal paths in general 

Typically, f(N) estimates:
• either the cost of a solution path through N

Then f(N) = g(N) + h(N), where
– g(N) is the cost of the path from the initial node to N
– h(N) is an estimate of the cost of a path from N to a goal node

How to construct f?
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• or the cost of a path from N to a goal node
Then f(N) = h(N)      Greedy best-search

But there are no limitations on f. Any function 
of your choice is acceptable. 
But will it help the search algorithm?

Typically, f(N) estimates:
• either the cost of a solution path through N

Then f(N) = g(N) + h(N), where
– g(N) is the cost of the path from the initial node to N
– h(N) is an estimate of the cost of a path from N to a goal node

How to construct f?
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• or the cost of a path from N to a goal node
Then f(N) = h(N)

But there are no limitations on f. Any function 
of your choice is acceptable. 
But will it help the search algorithm?

Heuristic function
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The heuristic function h(N) ≥ 0 estimates 
the cost to go from STATE(N) to a goal state 
Its value is independent of the current 
search tree; it depends only on STATE(N) 
and the goal test GOAL?

Heuristic Function
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Example:

h1(N)  = number of misplaced numbered tiles = 6
[Why is it an estimate of the distance to the goal?]
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h1(N)  = number of misplaced numbered tiles = 6
h2(N) = sum of the (Manhattan) distance of 

every numbered tile to its goal position
= 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13

h3(N) = sum of permutation inversions
= n5 + n8 + n4 + n2 + n1 + n7 + n3 + n6
= 4  + 6  + 3  + 1  + 0 + 2  + 0  + 0 
= 16

8-Puzzle
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f(N) = h(N) = number of misplaced numbered tiles
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The white tile is the empty tile
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8-Puzzle
f(N) = g(N) + h(N) 

with h(N) = number of misplaced numbered tiles
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8-Puzzle
f(N) = h(N) = Σ distances of numbered tiles to their goals
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Robot Navigation

yN
N

12

xN xg

yg

2 2
g g1 N Nh (N) = (x -x ) +(y -y ) (L2 or Euclidean distance)

h2(N)  =  |xN-xg| + |yN-yg| (L1 or Manhattan distance)
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Best-First → Efficiency

Local-minimum problem

13

f(N) = h(N) = straight distance to the goal

Can we prove anything?
If the state space is infinite, in general the 
search is not complete 

If the state space is finite and we do not 
discard nodes that revisit states  in general 
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discard nodes that revisit states, in general 
the search is not complete

If the state space is finite and we discard 
nodes that revisit states, the search is 
complete, but in general is not optimal

Admissible Heuristic

Let h*(N) be the cost of the optimal path 
from N to a goal node

The heuristic function h(N) is admissible

15

if: 
0 ≤ h(N) ≤ h*(N)

An admissible heuristic function is always 
optimistic !

Admissible Heuristic

Let h*(N) be the cost of the optimal path 
from N to a goal node

The heuristic function h(N) is admissible

16

if: 
0 ≤ h(N) ≤ h*(N)

An admissible heuristic function is always 
optimistic !

G is a goal node h(G) = 0

h (N)  = number of misplaced tiles = 6

8-Puzzle Heuristics
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h1(N)  = number of misplaced tiles = 6
is ???
h2(N) = sum of the (Manhattan) distances of    

every tile to its goal position
= 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13

is admissible
h3(N) = sum of permutation inversions

= 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0 = 16 
is not admissible

h (N)  = number of misplaced tiles = 6

8-Puzzle Heuristics
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h1(N)  = number of misplaced tiles = 6
is admissible
h2(N) = sum of the (Manhattan) distances of    

every tile to its goal position
= 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13

is ???
h3(N) = sum of permutation inversions

= 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0 = 16 
is not admissible
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h (N)  = number of misplaced tiles = 6

8-Puzzle Heuristics
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h1(N)  = number of misplaced tiles = 6
is admissible
h2(N) = sum of the (Manhattan) distances of    

every tile to its goal position
= 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13

is admissible
h3(N) = sum of permutation inversions

= 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0 = 16 
is ???

h (N)  = number of misplaced tiles = 6

8-Puzzle Heuristics
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h1(N)  = number of misplaced tiles = 6
is admissible
h2(N) = sum of the (Manhattan) distances of    

every tile to its goal position
= 2 + 3 + 0 + 1 + 3 + 0 + 3 + 1 = 13

is admissible
h3(N) = sum of permutation inversions

= 4 + 6 + 3 + 1 + 0 + 2 + 0 + 0 = 16 
is not admissible

Robot Navigation Heuristics

21

Cost of one horizontal/vertical step = 1
Cost of one diagonal step =  2

2 2
g g1 N Nh (N) = (x -x ) +(y -y ) is admissible

Robot Navigation Heuristics
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Cost of one horizontal/vertical step = 1
Cost of one diagonal step =  2

h2(N)  =  |xN-xg| + |yN-yg| is ???

Robot Navigation Heuristics
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Cost of one horizontal/vertical step = 1
Cost of one diagonal step =  2

h2(N)  =  |xN-xg| + |yN-yg| is admissible if moving along 
diagonals is not allowed, and 
not admissible otherwiseh*(I) = 4√2

h2(I) = 8

How to create an admissible h?

An admissible heuristic can usually be seen as 
the cost of an optimal solution to a relaxed
problem (one obtained by removing constraints)

In robot navigation:

24

g
• The Manhattan distance corresponds to removing the 

obstacles 
• The Euclidean distance corresponds to removing both 

the obstacles and the constraint that the robot 
moves on a grid

More on this topic later 
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A* Search
(most popular algorithm in AI)

1) f(N) = g(N) + h(N), where:
• g(N) = cost of best path found so far to N
• h(N) = admissible heuristic function

25

2) for all arcs: c(N,N’) ≥ ε > 0

3) SEARCH#2 algorithm is used

Best-first search is then called A* search

Result #1

A* is complete and optimal

[This result holds if nodes revisiting 
states are not discarded]
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states are not discarded]

Proof (1/2)
1) If a solution exists, A* terminates and 

returns a solution

- For each node N on the fringe, 
f(N) = g(N)+h(N) ≥ g(N) ≥ d(N)×ε, 

h  d(N)  h  d h f N  h  

27

where d(N) is the depth of N in the tree

Proof (1/2)
1) If a solution exists, A* terminates and 

returns a solution

- For each node N on the fringe, 
f(N) = g(N)+h(N) ≥ g(N) ≥ d(N)×ε, 

h  d(N)  h  d h f N  h  
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where d(N) is the depth of N in the tree

- As long as A* hasn’t terminated, a node K   
on the fringe lies on a solution path

K

Proof (1/2)
1) If a solution exists, A* terminates and 

returns a solution

- For each node N on the fringe, 
f(N) = g(N)+h(N) ≥ g(N) ≥ d(N)×ε, 

h  d(N)  h  d h f N  h  
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where d(N) is the depth of N in the tree

- As long as A* hasn’t terminated, a node K   
on the fringe lies on a solution path

- Since each node expansion increases the 
length of one path, K will eventually be 
selected for expansion, unless a solution is 
found along another path

K

Proof (2/2)
2) Whenever A* chooses to expand a goal 

node, the path to this node is optimal
- C*= cost of the optimal solution path

- G’: non-optimal goal node in the fringe

30

K

f(G’) = g(G’) + h(G’) = g(G’) > C*

- A node K in the fringe lies on an optimal 
path:

f(K) = g(K) + h(K) ≤ C*

- So, G’ will not be selected for expansion

G’
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Time Limit Issue
When a problem has no solution, A* runs for ever if 
the state space is infinite. In other cases, it may take 
a huge amount of time to terminate 
So, in practice, A* is given a time limit. If it has not 
found a solution within this limit, it stops. Then there 
is no way to know if the problem has no solution, or if 
more time was needed to find it

31

more time was needed to find it
When AI systems are “small” and solving a single 
search problem at a time, this is not too much of a 
concern. 
When AI systems become larger, they solve many 
search problems concurrently, some with no solution. 
What should be the time limit for each of them?
More on this in the lecture on Motion Planning ...

8-Puzzle

1+5
3+3

3+4

2+3

f(N) = g(N) + h(N) 
with h(N) = number of misplaced tiles
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Robot Navigation

58 7 46 23 3 54 6

f(N) = h(N), with h(N) = Manhattan distance to the goal
(not A*)
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Robot Navigation

58 7 46 23 3 54 6

f(N) = h(N), with h(N) = Manhattan distance to the goal
(not A*)
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Robot Navigation

f(N) = g(N)+h(N), with h(N) = Manhattan distance to goal
(A*)

58 7 46 23 3 54 68+38+3 7+47+4 6+56+3 5+65+6 4+74+7 3+83+8 2+92+9 3+10
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Best-First Search

An evaluation function f maps each node 
N of the search tree to a real number 
f(N) ≥ 0 

37

f(N) ≥ 0 
Best-first search sorts the FRINGE in 
increasing f

A* Search

1) f(N) = g(N) + h(N), where:
• g(N) = cost of best path found so far to N
• h(N) = admissible heuristic function

38

2) for all arcs: c(N,N’) ≥ ε > 0

3) SEARCH#2 algorithm is used

Best-first search is then called A* search

Result #1

A* is complete and optimal

[This result holds if nodes revisiting 
states are not discarded]

39

states are not discarded]

What to do with revisited states?

c = 1 2

h = 100 1 The heuristic h is 

40

100

21

0

90
clearly admissible

What to do with revisited states?

c = 1 2

h = 100 1 f = 1+100 2+1

41

100

21

0

90

104

4+90

?
If we discard this new node, then the search
algorithm expands the goal node next and
returns a non-optimal solution

1 2

100 1 1+100 2+1

What to do with revisited states?

42

100

21

0

90

104

4+902+90

102

Instead, if we do not discard nodes revisiting 
states, the search terminates with an optimal 
solution
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But ...
If we do not discard nodes revisiting 
states, the size of the search tree can be 
exponential in the number of visited states

43
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But ...
If we do not discard nodes revisiting 
states, the size of the search tree can be 
exponential in the number of visited states
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O(2n) nodes

It is not harmful to discard a node revisiting 
a state if the cost of the new path to this 
state is ≥ cost of the previous path
[so, in particular, one can discard a node if it re-visits 
a state already visited by one of its ancestors]

A* remains optimal, but states can still be re-
visited multiple times 
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visited multiple times 
[the size of the search tree can still be exponential in 
the number of visited states]

Fortunately, for a large family of admissible 
heuristics – consistent heuristics – there is a 
much more efficient way to handle revisited 
states

Consistent Heuristic
An admissible heuristic h is consistent (or 
monotone) if for each node N and each 
child N’ of N:

h(N) ≤ c(N,N’) + h(N’)
N

c(N,N’)

46

(triangle inequality)

N’ h(N)

h(N’)

Intuition: a consistent heuristics becomes 
more precise as we get deeper in the search tree

Consistency Violation

N
c(N,N’)

10

If h tells that N is 
100 units from the 
goal,  then moving 
from N along an arc 

 10  

47

N’ h(N)
=100

h(N’)
=10

=10

(triangle inequality)

costing 10 units 
should not lead to a 
node N’ that h 
estimates to be 10 
units away from the 
goal

Consistent Heuristic
(alternative definition)

A heuristic h is consistent (or monotone) if 
1) for each node N and each child N’ of N:

h(N) ≤ c(N,N’) + h(N’) N
c(N,N’)

48

2) for each goal node G:
h(G) = 0

(triangle inequality)

N’ h(N)

h(N’)

( , )

A consistent heuristic 
is also admissible
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A consistent heuristic is also admissible

An admissible heuristic may not be 
nsist nt  b t m n  dmissibl  h isti s 

Admissibility and Consistency

49

consistent, but many admissible heuristics 
are consistent

8-Puzzle

1 2 3

4 5 6

7 8

12

3

4

5

67

8

N

50

STATE(N) goal

h1(N)  = number of misplaced tiles
h2(N) = sum of the (Manhattan) distances 

of every tile to its goal position
are both consistent (why?)

N

N’ h(N)

h(N’)

c(N,N’)

h(N) ≤ c(N,N’) + h(N’)

Robot Navigation

N

N’ h(N)

h(N’)

c(N,N’)

51

Cost of one horizontal/vertical step = 1
Cost of one diagonal step =  2

2 2
g g1 N Nh (N) = (x -x ) +(y -y )

h2(N)  =  |xN-xg| + |yN-yg|
is consistent

is consistent if moving along 
diagonals is not allowed, and 
not consistent otherwise

h(N) ≤ c(N,N’) + h(N’)

If h is consistent, then whenever A* 
expands a node, it has already found 
an optimal path to this node’s state

Result #2

52

Proof (1/2)
1) Consider a node N and its child N’ 

Since h is consistent: h(N) ≤ c(N,N’)+h(N’)

f(N) = g(N)+h(N)  ≤ g(N)+c(N,N’)+h(N’) =  f(N’)
So, f is non-decreasing along any path

N

N’

53

2) If a node K is selected for expansion, then any other 
node N in the fringe verifies f(N) ≥ f(K)

Proof (2/2)

54

If one node N lies on another path to the state of K, 
the cost of this other path is no smaller than that of 
the path to K:
f(N’) ≥ f(N) ≥ f(K)    and     h(N’) = h(K)
So, g(N’) ≥ g(K)

K N

N’S
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2) If a node K is selected for expansion, then any other 
node N in the fringe verifies f(N) ≥ f(K)

Proof (2/2)
If h is consistent, then whenever A* expands a 
node, it has already found an optimal path to this 
node’s state

Result #2

55

If one node N lies on another path to the state of K, 
the cost of this other path is no smaller than that of 
the path to K:
f(N’) ≥ f(N) ≥ f(K)    and     h(N’) = h(K)
So, g(N’) ≥ g(K)

K N

N’S

Implication of Result #2

The path to N 
is the optimal 
path to S 

56

N N1
S S1

N2

N2 can be 
discarded

Revisited States with 
Consistent Heuristic

When a node is expanded, store its state 
into CLOSED 
When a new node N is generated:

57

• If STATE(N) is in CLOSED, discard N
• If there exists a node N’ in the fringe 

such that STATE(N’) = STATE(N), 
discard the node – N or N’ – with the 
largest f (or, equivalently, g)

Is A* with some consistent 
heuristic all that we need?

No !
There are very dumb consistent heuristic 
f i

58

functions

For example:  h ≡ 0

It is consistent (hence, admissible) !
A* with h≡0 is uniform-cost search
B dth fi t d if t  

59

Breadth-first and uniform-cost are 
particular cases of A*

Heuristic Accuracy
Let h1 and h2 be two consistent heuristics such 
that for all nodes N: 

h1(N) ≤ h2(N)
h2 is said to be more accurate (or more informed)

60

2 ( f )
than h1

h1(N) = number of misplaced 
tiles 
h2(N) = sum of distances of 
every tile to its goal position

h2 is more accurate than h1

14

7

5

2

63

8

STATE(N)

64

7

1

5

2

8

3

Goal state
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Result #3

Let h2 be more accurate than h1

Let A1* be A* using h1
and A2* be A* using h2

Wh   l ti  i t  ll th  

61

Whenever a solution exists, all the 
nodes expanded by A2*, except possibly 
for some nodes such that 

f1(N) = f2(N) = C* (cost of optimal solution)
are also expanded by A1* 

Proof
C* = h*(initial-node) [cost of optimal solution]

Every node N such that f(N) < C* is eventually 
expanded. No node N such that f(N) > C* is ever 
expanded
Every node N such that h(N) < C*−g(N) is eventually 

62

y ( ) g( ) y
expanded. So, every node N such that h2(N) < C*−g(N) 
is expanded by A2*. Since h1(N) ≤ h2(N), N is also 
expanded by A1*

If there are several nodes N such that f1(N) = f2(N) = 
C* (such nodes include the optimal goal nodes, if there 
exists a solution), A1* and A2* may or may not expand 
them in the same order (until one goal node is 
expanded)

Effective Branching Factor

It is used as a measure the effectiveness 
of a heuristic
Let n be the total number of nodes 
expanded by A* for a particular problem 

63

expanded by A* for a particular problem 
and d the depth of the solution
The effective branching factor b* is 
defined by n = 1 + b* + (b*)2 +...+ (b*)d

Experimental Results
(see R&N for details)

8-puzzle with:
h1 = number of misplaced tiles
h2 = sum of distances of tiles to their goal positions

Random generation of many problem instances
Average effective branching factors (number of 

d d d )

64

expanded nodes):
d IDS A1* A2*
2 2.45 1.79 1.79
6 2.73 1.34 1.30
12 2.78 (3,644,035) 1.42 (227) 1.24 (73)
16 -- 1.45 1.25
20 -- 1.47 1.27
24 -- 1.48 (39,135) 1.26 (1,641)

By solving relaxed problems at each node
In the 8-puzzle, the sum of the distances of 
each tile to its goal position (h2) corresponds to 
solving 8 simple problems:

How to create good heuristics?

5 8 1 2 3 d is th  l th f th

65It ignores negative interactions among tiles 
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64
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di is the length of the
shortest path to move
tile i to its goal position, 
ignoring the other tiles,
e.g., d5 = 2

h2 = Σi=1,...8 di

For example, we could consider two more complex 
relaxed problems:

Can we do better?
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3
d1234 = length of the 
shortest path to move 
tiles 1, 2, 3, and 4 to 
their goal positions  d5678

66

h = d1234 + d5678 [disjoint pattern heuristic]
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2 14 4

1 2 3

their goal positions, 
ignoring the other tiles 
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5

6

8
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For example, we could consider two more complex 
relaxed problems:

Can we do better?

14

7

5

2

63

8

64

7

1

5

2

8

3
d1234 = length of the 
shortest path to move 
tiles 1, 2, 3, and 4 to 
their goal positions  d5678

67

h = d1234 + d5678 [disjoint pattern heuristic]
How to compute d1234 and d5678?
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2 14 4

1 2 3

their goal positions, 
ignoring the other tiles 
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For example, we could consider two more complex 
relaxed problems:

Can we do better?
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3
d1234 = length of the 
shortest path to move 
tiles 1, 2, 3, and 4 to 
their goal positions  d5678

68

h = d1234 + d5678 [disjoint pattern heuristic]
These distances are pre-computed and stored 
[Each requires generating a tree of 3,024 nodes/states (breadth-
first search)]
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2 14 4

1 2 3

their goal positions, 
ignoring the other tiles 
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For example, we could consider two more complex 
relaxed problems:

Can we do better?

14

7

5

2

63

8

64

7

1

5

2

8

3
d1234 = length of the 
shortest path to move 
tiles 1, 2, 3, and 4 to 
their goal positions  d5678

Several order-of-magnitude speedups 
for the 15- and 24-puzzle (see R&N)
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h = d1234 + d5678 [disjoint pattern heuristic]
These distances are pre-computed and stored 
[Each requires generating a tree of 3,024 nodes/states (breadth-
first search)]

3

2 14 4

1 2 3
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8

their goal positions, 
ignoring the other tiles 

for the 15- and 24-puzzle (see R&N)

On Completeness and Optimality
A* with a consistent heuristic function has 
nice properties: completeness, optimality, no 
need to revisit states
Theoretical completeness does not mean 
“practical” completeness if you must wait too 

70

p p y
long to get a solution (remember the time 
limit issue)
So, if one can’t design an accurate consistent 
heuristic, it may be better to settle for a 
non-admissible heuristic that “works well in 
practice”, even through completeness and 
optimality are no longer guaranteed 

Iterative Deepening A* (IDA*)
Idea: Reduce memory requirement of 
A* by applying cutoff on values of f
Consistent heuristic function h
Algorithm IDA*:

71

Algorithm IDA :
1. Initialize cutoff to f(initial-node)
2. Repeat:

a. Perform depth-first search by expanding all 
nodes N such that f(N) ≤ cutoff

b. Reset cutoff to smallest value f of non-
expanded (leaf) nodes

8-Puzzle
f(N) = g(N) + h(N) 

with h(N) = number of misplaced tiles

72

4

6

Cutoff=4
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8-Puzzle
f(N) = g(N) + h(N) 

with h(N) = number of misplaced tiles
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4

4

6

Cutoff=4

6

8-Puzzle
f(N) = g(N) + h(N) 

with h(N) = number of misplaced tiles
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4

4

6

Cutoff=4

6

5

8-Puzzle

5

f(N) = g(N) + h(N) 
with h(N) = number of misplaced tiles
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4

4

6

Cutoff=4

6

5

8-Puzzle

56

f(N) = g(N) + h(N) 
with h(N) = number of misplaced tiles
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4

4

6

Cutoff=4

6

5

8-Puzzle
f(N) = g(N) + h(N) 

with h(N) = number of misplaced tiles
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4

6

Cutoff=5

8-Puzzle
f(N) = g(N) + h(N) 

with h(N) = number of misplaced tiles
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4

4

6

Cutoff=5

6
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8-Puzzle
f(N) = g(N) + h(N) 

with h(N) = number of misplaced tiles
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4

4

6

Cutoff=5

6

5

8-Puzzle
f(N) = g(N) + h(N) 

with h(N) = number of misplaced tiles

80

4

4

6

Cutoff=5

6

5

7

8-Puzzle
f(N) = g(N) + h(N) 

with h(N) = number of misplaced tiles
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4

4

6

Cutoff=5

6

5

7

5

8-Puzzle
f(N) = g(N) + h(N) 

with h(N) = number of misplaced tiles

82

4

4

6

Cutoff=5

6

5

7

5 5

8-Puzzle
f(N) = g(N) + h(N) 

with h(N) = number of misplaced tiles

83

4

4

6

Cutoff=5

6

5

7

5 5

5

Advantages/Drawbacks of IDA*

Advantages:
• Still complete and optimal
• Requires less memory than A*
• Avoid the overhead to sort the fringe

84

• Avoid the overhead to sort the fringe
Drawbacks:
• Can’t avoid revisiting states not on the 

current path
• Available memory is poorly used 

( memory-bounded search, see R&N p. 101-104)
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Local Search

Light-memory search method 
No search tree; only the current state 
is represented!
O l  li bl  t  bl  h  th  

85

Only applicable to problems where the 
path is irrelevant (e.g., 8-queen), unless 
the path is encoded in the state
Many similarities with optimization 
techniques

Steepest Descent
1) S initial state
2) Repeat:

a) S’ arg minS’∈SUCCESSORS(S){h(S’)} 
b) if GOAL?(S’) return S’ 
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c) if h(S’) < h(S)  then S S’ else return failure

Similar to:
- hill climbing with –h
- gradient descent over continuous space

Application: 8-Queen
Repeat n times:
1) Pick an initial state S at random with one queen in each column
2) Repeat k times:

a) If GOAL?(S) then return S
b) Pick an attacked queen Q at random 
c) Move Q in its column to minimize the number of attacking 

queens new S [min-conflicts heuristic]q [m f ]
3) Return failure

1
2

3
3
2
2
3

2
2

2
2

2
0
2

Application: 8-Queen
Repeat n times:
1) Pick an initial state S at random with one queen in each column
2) Repeat k times:

a) If GOAL?(S) then return S
b) Pick an attacked queen Q at random 
c) Move Q it in its column to minimize the number of attacking 

Why does it work ???
1) There are many goal states that are 

well-distributed over the state space
2) If no solution has been found after a few

steps, it’s better to start it all over again.
B ildi   h t  ld b  h l  queens is minimum new S

1
2

3
3
2
2
3

2
2

2
2

2
0
2

Building a search tree would be much less 
efficient because of the high branching 
factor

3) Running time almost independent of the 
number of queens

Steepest Descent
1) S initial state
2) Repeat:

a) S’ arg minS’∈SUCCESSORS(S){h(S’)} 
b) if GOAL?(S’) return S’ 

89

c) if h(S’) < h(S)  then S S’ else return failure

may easily get stuck in local minima
Random restart (as in n-queen example)
Monte Carlo descent

Monte Carlo Descent
1) S initial state
2) Repeat k times:

a) If GOAL?(S) then return S
b) S’ successor of S picked at random
c) if h(S’) ≤ h(S)  then S S’

90

d) else 
- Δh = h(S’)-h(S)
- with probability ~ exp(−Δh/T), where T is called the 

“temperature”, do: S S’             [Metropolis criterion]

3) Return failure

Simulated annealing lowers T over the k iterations. 
It starts with a large T and slowly decreases T
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“Parallel” Local Search 
Techniques

They perform several local searches 
concurrently, but not independently:

Beam search

91

Genetic algorithms

See R&N, pages 115-119

Search problems

Blind search

Heuristic search: 

92

Heuristic search: 
best-first and A*

Construction of heuristics Local searchVariants of A*

When to Use Search Techniques?

1) The search space is small, and
• No other technique is available, or
• Developing a more efficient technique is not 

worth the effort 

93

worth the effort 

2) The search space is large, and
• No other available technique is available, and
• There exist “good” heuristics


