Linalg (utils.linalg
)¶
Linear algebra helper routines and wrapper functions for handling sparse matrices and dense matrices representation.
-
nimfa.utils.linalg.
all
(X, axis=None)¶ Test whether all elements along a given axis of sparse or dense matrix :param:`X` are nonzero.
Parameters: X ( scipy.sparse
of format csr, csc, coo, bsr, dok, lil, dia) – Target matrix.or
numpy.matrix
:param axis: Specified axis along which nonzero test is performed. If :param:`axis` not specified, whole matrix is considered. :type axis: int
-
nimfa.utils.linalg.
any
(X, axis=None)¶ Test whether any element along a given axis of sparse or dense matrix X is nonzero.
Parameters: X ( scipy.sparse
of format csr, csc, coo, bsr, dok, lil,) – Target matrix.dia or
numpy.matrix
:param axis: Specified axis along which nonzero test is performed. If :param:`axis` not specified, whole matrix is considered. :type axis: int
-
nimfa.utils.linalg.
argmax
(X, axis=None)¶ Return tuple (values, indices) of the maximum entries of matrix :param:`X` along axis :param:`axis`. Row major order.
Parameters: X ( scipy.sparse
of format csr, csc, coo, bsr, dok, lil,) – Target matrix.dia or
numpy.matrix
:param axis: Specify axis along which to operate. If not specified, whole matrix :param:`X` is considered. :type axis: int
-
nimfa.utils.linalg.
argmin
(X, axis=None)¶ Return tuple (values, indices) of the minimum entries of matrix :param:`X` along axis :param:`axis`. Row major order.
Parameters: X ( scipy.sparse
of format csr, csc, coo, bsr, dok, lil,) – Target matrix.dia or
numpy.matrix
:param axis: Specify axis along which to operate. If not specified, whole matrix :param:`X` is considered. :type axis: int
-
nimfa.utils.linalg.
choose
(n, k)¶ A fast way to calculate binomial coefficients C(n, k). It is 10 times faster than scipy.mis.comb for exact answers.
Parameters: - n (int) – Index of binomial coefficient.
- k (int) – Index of binomial coefficient.
-
nimfa.utils.linalg.
count
(X, s)¶ Return the number of occurrences of element :param:`s` in sparse or dense matrix X.
Parameters: X ( scipy.sparse
of format csr, csc, coo, bsr, dok, lil, dia) – The input matrix.or
numpy.matrix
:param s: the input scalar. :type s: float
-
nimfa.utils.linalg.
diff
(X)¶ Compute differences between adjacent elements of X.
Parameters: X ( numpy.matrix
) – Vector for which consecutive differences are computed.
-
nimfa.utils.linalg.
dot
(X, Y)¶ Compute dot product of matrices :param:`X` and :param:`Y`.
Parameters: X ( scipy.sparse
of format csr, csc, coo, bsr, dok, lil, dia) – First input matrix.or
numpy.matrix
:param Y: Second input matrix. :type Y:scipy.sparse
of format csr, csc, coo, bsr, dok, lil, dia ornumpy.matrix
-
nimfa.utils.linalg.
elop
(X, Y, op)¶ Compute element-wise operation of matrix :param:`X` and matrix :param:`Y`.
Parameters: X ( scipy.sparse
of format csr, csc, coo, bsr, dok, lil, dia) – First input matrix.or
numpy.matrix
:param Y: Second input matrix. :type Y:scipy.sparse
of format csr, csc, coo, bsr, dok, lil, dia ornumpy.matrix
:param op: Operation to be performed. :type op: func
-
nimfa.utils.linalg.
find
(X)¶ Return all nonzero elements indices (linear indices) of sparse or dense matrix :param:`X`. It is Matlab notation.
Parameters: X – Target matrix. type X:
scipy.sparse
of format csr, csc, coo, bsr, dok, lil, dia ornumpy.matrix
-
nimfa.utils.linalg.
hstack
(X, format=None, dtype=None)¶ Stack sparse or dense matrices horizontally (column wise).
Parameters: X (sequence of scipy.sparse
of format csr, csc, coo, bsr,) – Sequence of matrices with compatible shapes.dok, lil, dia or
numpy.matrix
-
nimfa.utils.linalg.
inf_norm
(X)¶ Infinity norm of a matrix (maximum absolute row sum).
Parameters: X ( scipy.sparse.csr_matrix
,scipy.sparse.csc_matrix
) – Input matrix.or
numpy.matrix
-
nimfa.utils.linalg.
inv_svd
(X)¶ Compute matrix inversion using SVD.
Parameters: X ( scipy.sparse
ornumpy.matrix
) – The input matrix.
-
nimfa.utils.linalg.
max
(X, s)¶ Compute element-wise max(x,s) assignment for sparse or dense matrix.
Parameters: X ( scipy.sparse
of format csr, csc, coo, bsr, dok, lil, dia) – The input matrix.or
numpy.matrix
:param s: the input scalar. :type s: float
-
nimfa.utils.linalg.
min
(X, s)¶ Compute element-wise min(x,s) assignment for sparse or dense matrix.
Parameters: X ( scipy.sparse
of format csr, csc, coo, bsr, dok, lil, dia) – The input matrix.or
numpy.matrix
:param s: the input scalar. :type s: float
-
nimfa.utils.linalg.
multiply
(X, Y)¶ Compute element-wise multiplication of matrices :param:`X` and :param:`Y`.
Parameters: X ( scipy.sparse
of format csr, csc, coo, bsr, dok, lil, dia) – First input matrix.or
numpy.matrix
:param Y: Second input matrix. :type Y:scipy.sparse
of format csr, csc, coo, bsr, dok, lil, dia ornumpy.matrix
-
nimfa.utils.linalg.
negative
(X)¶ Check if :param:`X` contains negative elements.
Parameters: X ( scipy.sparse
of format csr, csc, coo, bsr, dok, lil,) – Target matrix.dia or
numpy.matrix
-
nimfa.utils.linalg.
norm
(X, p='fro')¶ Compute entry-wise norms (! not induced/operator norms).
Parameters: X ( scipy.sparse
of format csr, csc, coo, bsr, dok, lil, dia) – The input matrix.or
numpy.matrix
:param p: Order of the norm. :type p: str or float
-
nimfa.utils.linalg.
nz_data
(X)¶ Return list of nonzero elements from X (! data, not indices).
Parameters: X ( scipy.sparse
of format csr, csc, coo, bsr, dok, lil, dia) – The input matrix.or
numpy.matrix
-
nimfa.utils.linalg.
power
(X, s)¶ Compute matrix power of matrix :param:`X` for power :param:`s`.
Parameters: X ( scipy.sparse
of format csr, csc, coo, bsr, dok, lil, dia) – Input matrix.or
numpy.matrix
:param s: Power. :type s: int
-
nimfa.utils.linalg.
repmat
(X, m, n)¶ Construct matrix consisting of an m-by-n tiling of copies of X.
Parameters: X ( scipy.sparse
of format csr, csc, coo, bsr, dok, lil,) – The input matrix.dia or
numpy.matrix
:param m,n: The number of repetitions of :param:`X` along each axis. :type m,n: int
-
nimfa.utils.linalg.
sop
(X, s=None, op=None)¶ Compute scalar element wise operation of matrix :param:`X` and scalar :param:`s`.
Parameters: X ( scipy.sparse
of format csr, csc, coo, bsr, dok, lil, dia) – The input matrix.or
numpy.matrix
:param s: Input scalar. If not specified, element wise operation of input matrix is computed. :type s: float :param op: Operation to be performed. :type op: func
-
nimfa.utils.linalg.
sort
(X)¶ Return sorted elements of :param:`X` and array of corresponding sorted indices.
Parameters: X ( scipy.sparse
of format csr, csc, coo, bsr, dok, lil,) – Target vector.dia or
numpy.matrix
-
nimfa.utils.linalg.
std
(X, axis=None, ddof=0)¶ Compute the standard deviation along the specified :param:`axis` of matrix :param:`X`.
Parameters: X ( scipy.sparse
of format csr, csc, coo, bsr, dok, lil,) – Target matrix.dia or
numpy.matrix
:param axis: Axis along which deviation is computed. If not specified, whole matrix :param:`X` is considered. :type axis: int :param ddof: Means delta degrees of freedom. The divisor used in computation is N - :param:`ddof`, where N represents the number of elements. Default is 0. :type ddof: float
-
nimfa.utils.linalg.
sub2ind
(shape, row_sub, col_sub)¶ Return the linear index equivalents to the row and column subscripts for given matrix shape.
Parameters: - shape (tuple) – Preferred matrix shape for subscripts conversion.
- row_sub (list) – Row subscripts.
- col_sub (list) – Column subscripts.
-
nimfa.utils.linalg.
svd
(X)¶ Compute standard SVD on matrix X.
Parameters: X ( scipy.sparse
of format csr, csc, coo, bsr, dok, lil,) – The input matrix.dia or
numpy.matrix
-
nimfa.utils.linalg.
trace
(X)¶ Return trace of sparse or dense square matrix X.
Parameters: X ( scipy.sparse
of format csr, csc, coo, bsr, dok, lil,) – Target matrix.dia or
numpy.matrix
-
nimfa.utils.linalg.
vstack
(X, format=None, dtype=None)¶ Stack sparse or dense matrices vertically (row wise).
Parameters: X (sequence of scipy.sparse
of format csr, csc, coo, bsr,) – Sequence of matrices with compatible shapes.dok, lil, dia or
numpy.matrix