
LEARNING ACTION MODELS FOR REACTIVE

AUTONOMOUS AGENTS

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Scott Sherwood Benson

December 6, 1996

c
 Copyright 1996 by Scott Sherwood Benson

All Rights Reserved

ii

I certify that I have read this dissertation and that in

my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

Nils J. Nilsson
(Principal Advisor)

I certify that I have read this dissertation and that in

my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

Yoav Shoham
Professor, Computer Science

I certify that I have read this dissertation and that in

my opinion it is fully adequate, in scope and quality, as

a dissertation for the degree of Doctor of Philosophy.

Barbara Hayes-Roth
Senior Research Scientist, Computer Science

Approved for the University Committee on Graduate

Studies:

iii

Abstract

To be maximally e�ective, autonomous agents such as robots must be able both to

react appropriately in dynamic environments and to plan new courses of action in

novel situations. Reliable planning requires accurate models of the e�ects of actions|

models which are often more appropriately learned through experience than designed.

This thesis describes TRAIL (Teleo-Reactive Agent with Inductive Learning), an inte-

grated agent architecture which learns models of actions based on experiences in the

environment. These action models are then used to create plans that combine both

goal-directed and reactive behaviors.

Previous work on action-model learning has focused on domains that contain

only deterministic, atomic action models that explicitly describe all changes that can

occur in the environment. The thesis extends this previous work to cover domains

that contain durative actions, continuous variables, nondeterministic action e�ects,

and actions taken by other agents. Results have been demonstrated in several robot

simulation environments and the Silicon Graphics, Inc.
ight simulator.

The main emphasis in this thesis is on the action-model learning process within

TRAIL. The agent begins the learning process by recording experiences in its environ-

ment either by observing a trainer or by executing a plan. Second, the agent identi�es

instances of action success or failure during these experiences using a new analysis

demonstrating nine possible causes of action failure. Finally, a variant of the Inductive

Logic Programming algorithm DINUS is used to induce action models based on the

action instances. As the action models are learned, they can be used for constructing

plans whose execution contributes to additional learning experiences. Diminishing

reliance on the teacher signals successful convergence of the learning process.

iv

To My Parents

v

Acknowledgements

This thesis is a product of the contributions of many people. First of all, Nils Nilsson

was always there to support and supervise my research work during my years at Stan-

ford, and constantly ready with intelligent and witty advice, comments, criticisms,

and suggestions. The ideas in this thesis owe much to our many thought-provoking

discussions. Nils has also been an inspiring example as a professor, both in sharing his

enthusiasm for the art and science of AI and in his help with the details of preparing

a new undergraduate course in the �eld.

The other members of the committee, Yoav Shoham and Barbara Hayes-Roth,

have also contributed much to the shaping of this thesis with their comments and

advice, particularly on the overall directions of the research. Although not on the

committee, Pat Langley had a major in
uence on the thesis through long discussions

and a ready supply of technical knowledge on all areas of machine learning.

I would also like to thank the various members of the Bots and Nobots research

groups over the years, who listened to presentations of many stages of this research

and were always there to provide helpful suggestions, blunt criticisms, and endless

argumentation. In particular, I'd like to thank Marko Balabanovic, Lise Getoor,

George John, Steve Ketchpel, Ronny Kohavi, Daphne Koller, Andrew Kosoresow,

Ofer Matan, Illah Nourbakhsh, Karl P
eger, and Mehran Sahami. There have also

been many other colleagues both at Stanford and elsewhere who provided useful and

interesting feedback on the research, among them Marie desJardins, Scott Hu�man,

Arjun Kapur, Jean-Claude Latombe, Seth Rogers, Marcel Schoppers, Walter Tackett,

and Xue Mei Wang. I would also like to thank Jutta McCormick, Mina Madrigal,

and Sara Merryman for their support and assistance during my time at Stanford.

vi

A great debt of gratitude is owed to Devika Subramanian, whose Introduction to

Arti�cial Intelligence course at Cornell University instilled in me a love of the subject

and inspired me to continue on in the �eld. If it had not been for CS472 and the

Lego Project, most likely none of this thesis would have happened.

Most of this thesis was completed while supported by the National Science Foun-

dation under grants IRI-9116399 and IRI-9421839. My �rst few years at Stanford

were supported by a fellowship from the National Defense Science and Engineering

Graduate Fellowship Program.

Finally, my friends and family have always made the graduate student life a mem-

orable and interesting one: Colleen, Susan, Steve, Sarah, Herb, Annegret, Raf, and

all the rest of the Lutherans; Bert, Cyndy, Andrei, Doug, Steve, Debbie, Joel, Floyd,

Rupert, Brian, and the other members and ex-members of the Stanford Bridge Club;

and from afar, Tejas, Pat, Lisa, Laura, Ted, and Mark. Finally, Mom and Dad have

always been there with their support, love, and understanding for a son far away from

home.

vii

Typographical Conventions

Throughout this thesis, we will be using the following typographical conventions to

indicate the function of various items:

� Predicate names and constants will be in capitalized italics, e.g. Holding(?x),

Article1.

� Function names will be in lower-case italics, e.g. copies(2; Article1). (Techni-

cally, constants are 0-ary functions but the distinction between predicate names

and constants should always be clear.)

� The universally true predicate will be indicated by T , the universally false pred-

icate by F .

� Action names will be in lower-case typewriter font, e.g. turn, move-forward.

� Indexical-functional variables (introduced in Chapter 5) will be in capitalized

typewriter font, e.g. Location-of-Robot. (Technically, each capitalized word

indicates the start of a new indexical-functional object.)

� Names of computer systems will be in sans serif font, e.g. STRIPS, LIVE.

� Variables are lower-case italic letters preceeded by a question mark, e.g. ?x; ?z.

� World states will be indicated by a lower-case italic si. For any state si, the

description of the state in predicate logic will be denoted by Si. Finally, we will

occasionally need to to refer to the state in predicate logic. Such references will

be indicated by an italic upper-case STi.

viii

Contents

Abstract iv

Acknowledgements vi

Typographical Conventions viii

1 Introduction 1

1.1 Autonomous Agents That Learn from Environments : : : : : : : : : : 1

1.1.1 Controlling Autonomous Agents : : : : : : : : : : : : : : : : : 2

1.1.2 Action Model Learning : 4

1.2 The Problem Domains : 5

1.2.1 Botworld : 6

1.2.2 The Delivery Domain : 8

1.2.3 The Flight Simulator : 9

1.3 Overview : 11

1.4 Principal Contributions : 12

2 Action Representation in TRAIL 15

2.1 Teleo-Reactive Trees : 15

2.1.1 Simulating Continuous Execution : : : : : : : : : : : : : : : : 18

2.1.2 Theoretical Properties of TR Trees : : : : : : : : : : : : : : : 20

2.1.3 Nonlinear Plans and Conjunctive Tree Nodes : : : : : : : : : : 22

2.2 Planning and Teleo-Reactive Trees : : : : : : : : : : : : : : : : : : : 23

2.2.1 Automated Planning : 24

ix

2.2.2 Action Models in STRIPS and TRAIL : : : : : : : : : : : : : : 25

2.3 Teleo-Operators : 26

2.3.1 The Teleo-Operator Formalism : : : : : : : : : : : : : : : : : 27

2.3.2 Teleo-Operators in Deterministic Environments : : : : : : : : 28

2.3.3 Teleo-Operators in Non-Deterministic Environments : : : : : : 31

2.3.4 Side E�ects of Teleo-Operators : : : : : : : : : : : : : : : : : 32

2.3.5 Semantics of Delete List Elements : : : : : : : : : : : : : : : : 34

2.3.6 Add-List Elements : 36

2.3.7 An Example of a TOP : 38

2.4 The Use of Teleo-Operators in Planning : : : : : : : : : : : : : : : : 40

2.4.1 Regressing a Condition Through a TOP : : : : : : : : : : : : 42

2.4.2 Plan Libraries : 43

2.4.3 Iterative Replanning : 43

2.5 Correcting Trees Built with Incorrect TOPs : : : : : : : : : : : : : : 44

3 Learning in Autonomous Agents 47

3.1 Approaches to Autonomous Agent Learning : : : : : : : : : : : : : : 48

3.1.1 Policy Learning : 48

3.1.2 Environmental Modeling : 50

3.1.3 Action Model Learning : 51

3.1.4 Specialized Knowledge Acquisition : : : : : : : : : : : : : : : 52

3.2 Learning From Exploration and Teaching : : : : : : : : : : : : : : : : 53

3.3 Environments : 55

3.3.1 Continuous and Discrete Features : : : : : : : : : : : : : : : : 56

3.3.2 Propositional and Structured State Descriptions : : : : : : : : 57

3.3.3 Determinism : 58

3.3.4 Durative and Atomic Actions : : : : : : : : : : : : : : : : : : 59

3.3.5 Hostile Environments : 59

3.4 TRAIL's Environmental Assumptions : : : : : : : : : : : : : : : : : : 60

3.5 An Overview of TRAIL : 62

4 Instance Generation in TRAIL 65

x

4.1 Inductive Concept Learning : 65

4.2 Experience Records in Continuous Environments : : : : : : : : : : : : 67

4.2.1 Sources of Experience Records : : : : : : : : : : : : : : : : : : 69

4.2.2 Simplifying Experience Records : : : : : : : : : : : : : : : : : 70

4.3 Generating Positive Instances : 71

4.3.1 Recording Positive Instances from Experience Records : : : : 72

4.3.2 Positive Instances in Real-Valued Domains : : : : : : : : : : : 74

4.4 Generating Negative Instances : 76

4.4.1 Failure in Teleo-Reactive Trees : : : : : : : : : : : : : : : : : 76

4.4.2 Analyzing Activation Failures : : : : : : : : : : : : : : : : : : 78

4.4.3 Analyzing Timeout Failures : : : : : : : : : : : : : : : : : : : 81

4.4.4 Generating Negative Instances from Plan Failures : : : : : : : 82

4.4.5 Generating Negative Instances from a Teacher : : : : : : : : : 83

4.5 Instance Generation in Other Systems : : : : : : : : : : : : : : : : : 86

4.5.1 Instance Generation in LIVE : : : : : : : : : : : : : : : : : : : 86

4.5.2 Instance Generation in EXPO : : : : : : : : : : : : : : : : : : 87

4.5.3 Instance Generation in OBSERVER : : : : : : : : : : : : : : : 88

4.5.4 Instance Generation in DeJong's Continuous Domain Planner 88

5 Learning in TRAIL Using ILP 91

5.1 Introduction to ILP : 91

5.2 Limited ILP for Action-Model Learning : : : : : : : : : : : : : : : : : 93

5.3 Overview of Existing ILP Algorithms : : : : : : : : : : : : : : : : : : 97

5.3.1 FOIL : 98

5.3.2 GOLEM : 100

5.3.3 LINUS and DINUS : 102

5.3.4 Applications : 104

5.4 An Indexical-Functional View of ILP : : : : : : : : : : : : : : : : : : 105

5.4.1 Indexical-Functional Variables : : : : : : : : : : : : : : : : : : 105

5.4.2 An Example of IFV Computation : : : : : : : : : : : : : : : : 109

5.4.3 Indexical-Functional Instance Representations : : : : : : : : : 112

xi

5.4.4 The Example Continued : 115

5.4.5 Using Indexical-Functional Representations for Learning : : : 117

5.5 ILP Learning Strategies : 118

5.5.1 The Generic Top-Down Learning Algorithm : : : : : : : : : : 118

5.5.2 Accuracy and Coverage : 121

5.5.3 Literal Selection Criteria in FOIL and CN2 : : : : : : : : : : : 122

5.5.4 Strategies for Learning Preimages : : : : : : : : : : : : : : : : 123

5.5.5 Heuristics for Learning from Positive Instances : : : : : : : : : 126

5.5.6 Including Intervals in Preimages : : : : : : : : : : : : : : : : : 127

5.6 Converting from Concepts to TOPs : : : : : : : : : : : : : : : : : : : 128

5.7 Computational Complexity of TRAIL's ILP Algorithms : : : : : : : : 131

5.8 Concept Learning in Other Action-Model Learners : : : : : : : : : : 134

6 Examples and Evaluation 137

6.1 The Behavior of the Overall TRAIL Architecture : : : : : : : : : : : : 138

6.2 An Extended Example in Botworld : : : : : : : : : : : : : : : : : : : 140

6.3 An Extended Example in the Flight Simulator : : : : : : : : : : : : : 148

6.3.1 Learning to Take O� : 149

6.3.2 Learning to Land : 155

6.3.3 Learning Level Flight : 157

6.4 Evaluation Metrics for Autonomous Learning Systems : : : : : : : : : 158

6.4.1 An Evaluation Metric for TRAIL : : : : : : : : : : : : : : : : : 160

6.4.2 Choosing Domains for Evaluation : : : : : : : : : : : : : : : : 161

6.5 Performance in the Botworld Construction Domain : : : : : : : : : : 162

6.6 Performance in the Delivery Domain : : : : : : : : : : : : : : : : : : 164

6.7 Learning Issues in the Flight Simulator : : : : : : : : : : : : : : : : : 166

7 Summary and Conclusions 171

7.1 Summary of TRAIL : 171

7.2 Areas for Future Work : 173

7.3 Lessons Learned and Conclusions : 180

xii

Bibliography 181

xiii

List of Tables

2.1 The Components of a TOP : 27

4.1 A State-Action Sequence : 73

4.2 Possible Explanations For a TR Node Failure : : : : : : : : : : : : : 78

5.1 Instances For Learning an Operator for copy : : : : : : : : : : : : : : 93

5.2 Indexical-Functional Representations of copy TOP Variables : : : : : 106

5.3 Description of a State s0 : 109

5.4 An Initial Set of Active Referents : 110

5.5 Set of Active Referents After the First Cycle : : : : : : : : : : : : : : 111

5.6 Set of Active Referents After the Second Cycle : : : : : : : : : : : : : 112

5.7 Active Referents to be Used in IFV Representation : : : : : : : : : : 115

5.8 A Simple Concept Learning Problem : : : : : : : : : : : : : : : : : : 120

5.9 Average Size of State Representations Using IFVs : : : : : : : : : : : 133

6.1 Partial List of Learned Construction TOPs : : : : : : : : : : : : : : : 141

6.2 Learned TOPs in the Flight Simulator : : : : : : : : : : : : : : : : : 149

xiv

List of Figures

1.1 The Botworld Domain : 6

1.2 Terms Used in Botworld Predicates : : : : : : : : : : : : : : : : : : : 7

2.1 A TR Tree : 17

2.2 A TR Tree With Conjunctive Nodes : : : : : : : : : : : : : : : : : : 23

2.3 A Preimage Region and Preimage Condition : : : : : : : : : : : : : : 30

2.4 A TR Node With a Conjunctive Goal Condition : : : : : : : : : : : : 33

2.5 A TR Node Created Using a Faulty Add-List Element : : : : : : : : 37

2.6 A Sample TOP : 38

3.1 TRAIL's Agent Architecture : 64

4.1 Experience Records, as Viewed in State Space : : : : : : : : : : : : : 68

4.2 The General Case of a TR Node Pair : : : : : : : : : : : : : : : : : : 77

4.3 A Plan That Fails Due to a Side E�ect : : : : : : : : : : : : : : : : : 83

5.1 The Preimage Learning Process Using ILP : : : : : : : : : : : : : : : 96

5.2 The Generic Covering Algorithm : 119

5.3 Algorithm For Learning Monomials : : : : : : : : : : : : : : : : : : : 125

5.4 Algorithm For Learning Disjunctions : : : : : : : : : : : : : : : : : : 126

6.1 TRAIL's Agent Architecture : 138

6.2 Initial State For First Botworld Task : : : : : : : : : : : : : : : : : : 141

6.3 Initial State For Second Botworld Task : : : : : : : : : : : : : : : : : 142

6.4 An Initial Plan For Bar-Grabbing : 143

6.5 Modi�ed Plan For Bar-Grabbing : 143

xv

6.6 Initial State For Fourth Botworld Task : : : : : : : : : : : : : : : : : 145

6.7 Initial State For Fifth Botworld task : : : : : : : : : : : : : : : : : : 146

6.8 A More Complex Bar-Grabbing Plan : : : : : : : : : : : : : : : : : : 147

6.9 A Simpli�ed Version of the Bar-Grabbing Plan : : : : : : : : : : : : : 148

6.10 Initial Plan For Taking O� : 150

6.11 Revised Plan For Taking O� : 151

6.12 Third Plan For Taking O� : 152

6.13 Successful Plan For Taking O� : 154

6.14 Initial Plan For Landing : 156

6.15 An Initial Plan For Level Flight : 159

6.16 Mean Success Rate in the Construction Domain as a Function of the

Number of Tasks Completed : 162

6.17 Mean Success Rate in the Delivery Domain as a Function of the Num-

ber of Tasks Completed : 165

6.18 Two Plans For Level Flight : 168

7.1 A Standard TR Tree For Bar-Grabbing : : : : : : : : : : : : : : : : : 179

xvi

Chapter 1

Introduction

In this thesis, we are interested in autonomous agents that learn from their envi-

ronments. Autonomous agents are ubiquitous in the �eld of Arti�cial Intelligence,

ranging from robots to intelligent characters for interactive entertainment (Bates

1992, Bates 1994, Hayes-Roth 1995) to various Softbots and web agents (Etzioni &

Weld 1994, Jennings & Wooldridge 1996). \Autonomous agent" is a term that is dif-

�cult to de�ne precisely, but in general we use the term to refer to a computer system

that can act with only minimal human supervision. A human might give advice or

instructions to such an agent, but would not be controlling its low-level interactions

with the world. Thus, the agent must have some ability to act independently.

1.1 Autonomous Agents That Learn from Envi-

ronments

An environment in general consists of that part of the world with which an agent

must interact. As mentioned above, autonomous agents can exist in both physical

environments, as do robots, and computational environments, as do software agents

and virtual characters. An agent will generally have some way of sensing at least part

of the state of its environment, and can take actions that a�ect its environment. An

autonomous agent will also usually have goals, which correspond in some way to states

1

2 CHAPTER 1. INTRODUCTION

of the environment that are \desirable" for the agent. If the agent is well-constructed,

its behavior should be directed at achieving these goal states.

The behavior of an intelligent agent can come from two di�erent sources: behaviors

can be programmed directly into the agent, or the agent can learn goal-achieving

behavior through experience in its environment over time. Both approaches have

di�culties. Purely programmed behavior can be in
exible and costly to design, while

learning can be unpredictable and can take many experiences to achieve competent

behavior. This thesis presents one approach to designing an autonomous agent that

can combine these two sources of behavior in what we believe are interesting and

useful ways.

1.1.1 Controlling Autonomous Agents

Assume for the moment that we wish to program the behavior of an autonomous

agent. There are a number of approaches we might take. As an initial attempt,

we might simply give it a large table of condition-action (or stimulus-response) pairs

that cover every possible sensory state. Thus, the agent perceives the world (the

stimulus), determines which condition in the list holds given the perception, and

takes the associated action (the response). If the goals of the agent change, it can

simply begin executing a di�erent table of condition-action pairs. This stimulus-

response model of agent programming may seem simplistic, but when used cleverly,

it can result in surprisingly e�ective behaviors, such as the locomotion behaviors of

various robots from Brooks' research group (Brooks 1989a, Brooks 1989b, Flynn &

Brooks 1988).

For many practical environments, however, it is either very di�cult or simply too

time-consuming to precompute a condition-action table that covers all the situations

that may arise, especially if the domain tends to be unpredictable. If the agent

has a model describing its environment and the e�ects of the actions it can take

in the environment,1 it can use various techniques such as dynamic programming

1Such a model can take a variety of forms. Environmental models are discussed further in
Section 3.1.2

1.1. AUTONOMOUS AGENTS THAT LEARN FROM ENVIRONMENTS 3

(Bellman 1962) or symbolic planning (Tate, Hendler & Drummond 1990) to determine

appropriate behavior for a given goal. Since the environmental model is independent

of the particular goal, this method can e�ectively handle situations where the agent

has many di�erent goals to accomplish. A good historical example of this method

is found in Shakey the robot (Nilsson 1984), which was given a description of its

environment in terms of STRIPS operators (Fikes & Nilsson 1971), and when given a

goal, would construct a plan to achieve that goal, and carry out the plan in the real

world.

The di�culty with this solution is that giving the agent a complete model of the

environment is often as di�cult, if not more so, than specifying a stimulus-response

behavior table. While it was easy to describe Shakey's environment using discrete

STRIPS operators, most domains are signi�cantly more complicated. The knowledge

acquisition bottleneck is a well-known problem in the �eld of expert systems, and is

clearly a di�culty in world modeling as well. It is di�cult to get human experts to

produce models in forms corresponding to those used by automated planning systems,

and even then there may be inaccuracies or omissions in the model. Therefore, an

agent that hopes to be able to make use of a model in such environments will need

some capability for learning and modifying its environmental model.

However, while we believe that learning will be an essential component of the

behavior of an autonomous agent, we do not believe it should be the only component

of such an agent. Learning complete behaviors in an arbitrary environment is a very

di�cult problem, as we will discuss further in Section 3.2. Therefore, we would like

our agent to be able to make use of human knowledge as well as knowledge that it

has learned independently. Even though a human programmer may not be able to

write a complete control program for the agent, he or she may be able to provide

either a partial condition-action table or a partial model of the environment. Our

agent should be able to take advantage of either of these forms of assistance.

Regardless of the learning methods used by an autonomous agent, we can view

its actions as being determined by some control structure. For instance, this control

structure may be a piece of code, a stimulus-response table, a symbolic plan, a neural

network, or any of a variety of other mechanisms. Given our discussion above, this

4 CHAPTER 1. INTRODUCTION

control structure must be able to support the execution of human-written control

programs, the creation of new control programs through planning based on human-

written environmental models, and the learning of new control programs through

experience in the environment.

In this thesis, we have chosen to use teleo-reactive trees, or TR trees (Nilsson

1994), as our agent control structure. TR trees have a number of advantages as

an agent control mechanism. They are easy for humans to write, and their sym-

bolic structure allows for easy creation and modi�cation by planning and learning

algorithms. In addition, they are reactive, allowing the agent to operate in contin-

uous, dynamic, and noisy environments. TR trees are presented in more detail in

Section 2.1.

1.1.2 Action Model Learning

Learning can be de�ned in many di�erent ways (see Langley (1996) for some discussion

on this) but from the point of view of an autonomous agent, learning can be de�ned

as anything that allows the agent to improve its performance. There are various

ways in which learning might be used for this purpose, which are examined in more

detail in Chapter 3. This thesis is concerned with one particular form of learning,

known as action-model learning. Rather than try to learn a set of TR trees directly

from experience, our system attempts to learn models of the environment that the

agent can then use to construct TR trees through well-known automated planning

techniques. This allows for the transfer of learning from one task to another in a

natural and e�ective manner, resulting in a highly versatile agent that can deal with

a wide variety of tasks.

There is a variety of existing work on the subject of action-model learning, most

of it done at Carnegie Mellon University within the past several years (Gil 1992, Shen

1989, Shen 1994, Wang & Carbonell 1994, Wang 1995b). However, all of this work has

assumed a particular model of operator execution, which we call the STRIPS model

(Fikes & Nilsson 1971). This model is appropriate for certain domains, but does

not apply well to domains that contain continuous variables, noisy sensors, or other

agents { in short, the sorts of domains that TR trees were originally designed to deal

1.2. THE PROBLEM DOMAINS 5

with.

This thesis presents an action-model learning system known as TRAIL (Teleo-

Reactive Agent with Inductive Learning). Like other action-model learning systems,

TRAIL operates by building models that describe the e�ects of actions in new domains,

which can then be used by a backward-chaining planner to construct plans that

achieve new goals. But in combination with the TR tree control structure, TRAIL can

also deal with continuous state variables, non-atomic actions, unreliable sensors, and

unpredictable events.

1.2 The Problem Domains

TRAIL has been experimentally tested in three di�erent domains: a simulated con-

struction domain known as Botworld, a simulated o�ce delivery domain, and the

Silicon Graphics Flight Simulator. Examples of TRAIL's behavior and results on its

performance in each of the domains can be found in Chapter 6.

As we discuss below, each of the three domains provides a di�erent set of di�culties

for a learning system. However, the reader will note that none of these domains

involves physical robots. This is primarily because the technology of mobile robotics

is not really su�ciently advanced to allow us to test TRAIL in interesting ways. Most

of the di�culties involved in implementing, say, an o�ce delivery robot, are low-level

di�culties in navigation and manipulation. We believe that the techniques used in

TRAIL are more appropriate for higher-level tasks, which would be di�cult if not

impossible to test on a physical robot at present. It would certainly be possible to

implement something like the o�ce delivery domain on a simple mobile robot by

assuming \virtual manipulation" of objects, but it does not seem that this would be

any more meaningful than the simulator in evaluating the high-level performance of

TRAIL.

6 CHAPTER 1. INTRODUCTION

Figure 1.1: The Botworld Domain

1.2.1 Botworld

The �rst problem domain is a simulated construction domain, Botworld (Teo 1992).

Botworld is a continuous two-dimensional space of robots (known as \bots"), obsta-

cles, bars, and assemblies of bars. Each robot can pick up bars, move them around

the environment, and connect them to other bars and structures. Robots can move

over bars lying on the \
oor" but cannot move through other robots or obstacles.

Each Botworld robot senses the environment at a rapid sampling rate, receiving

information about its own position and orientation and whether or not it is holding

a bar. It also senses the locations and orientations of nearby bars, obstacles, and

robots. We can simulate imperfect sensors by adding noise to these measurements.

A sample scene from Botworld is shown in Figure 1.1.

Unlike other simpli�ed experimental domains such as grid worlds, actions in Bot-

world can be durative as well as discrete. A durative action is one that can continue

inde�nitely, such as move, as opposed to an atomic action such as pick-up(Block1)

or move-one-foot. Botworld also has atomic actions, such as the bar-grabbing and

welding operations, but the moving and turning operators are fundamentally durative.

A bot has the following perceptual predicates available to sense a particular bar

(see Figure 1.2):

Holding(?b) is true i� the bot is holding bar ?b.

Free(?b) is true i� bar ?b is not being held by any bot (no more than one bot can

1.2. THE PROBLEM DOMAINS 7

bar-midline

grabbing-distance

place from which
bar can be
grabbed

Figure 1.2: Terms Used in Botworld Predicates

be holding a given bar.)

FacingBar(?b) is true i� the bot is facing the center of the bar.

AtGrabbingDist(?b) is true i� the bot is at the appropriate distance from the center

of the bar to grab it.

TooFar(?b) is true i� the bot is further from the center of the bar than the proper

\grabbing distance".

OnMidline(?b) is true if the bot is on the \midline", an imaginary line going through

the center of the bar and perpendicular to the bar.

FacingMidline(?b) is true if the bot is facing toward the midline rather than away

from it.

ParallelTo(?b) is true if the bot is facing parallel to the long axis of the bar.

The bot also has the following set of actions it can take in the world:

forward moves the bot forward continuously.

backward moves the bot backward continuously.

turn rotates the bot to the left continuously. There is an analogous right-turn

operator which is not used in this thesis.

8 CHAPTER 1. INTRODUCTION

grab is an atomic action that attempts to grab the bar one time. It either succeeds

or fails almost immediately.

There are a number of other actions a bot can take, such as welding bars together

and \speaking", but they are not used in any of our Botworld examples.

It is important to note that the bot's actions do not always have deterministic

e�ects with respect to the predicates given above. For instance, the FacingBar

predicate is actually de�ned in terms of the angle between the bot's heading direction

and the center of some bar. As the bot moves forward towards the bar, this angle

will increase, and thus may cause FacingBar to become false. As a result, if the

bot moves forward while FacingBar is true, either the bot will reach the grabbing

distance while FacingBar remains true, or FacingBar will become false before the

bot reaches the grabbing distance. Of course, we could have designed the FacingBar

predicate so that this did not occur, but in many domains it will not be possible to

de�ne predicates such that all action e�ects are deterministic. Therefore, our learner

needs to be able to at least deal with this simple form of nondeterminism.

A standard benchmark problem in Botworld is the task of picking up a bar from

any given starting position. A bar can only be grabbed if it is free, and the bot is on

the midline, facing the bar, and at the correct distance. (The appropriate positions

are shown in Figure 1.2.) In order to get to such a position, the bot must move to

the midline, turn toward the center of the bar, and move forward or backward until it

gets to the correct distance. A typical program to accomplish the bar-grabbing task

can be found in Section 7.2.

The task of bar-grabbing is clearly a relatively simple one. However, it does involve

durative actions and sometimes unpredictable action e�ects. Therefore, Botworld

served as a useful domain for developing our system and testing out learning ideas.

1.2.2 The Delivery Domain

The second problem domain is a fairly standard one in the planning literature. It

involves a simulated robot in an o�ce environment of interconnected rooms inhabited

by various people. Tasks for the robot include delivering messages to people, fetching

1.2. THE PROBLEM DOMAINS 9

objects for people, and making copies of articles and delivering then to people. Low-

level navigation routines are built into the robot, so the robot only needs to do

planning at higher levels.

A typical task in the delivery domain might be \deliver two copies of Article1 to

George". The plan for this task consists of seven steps: go to the library, ask the

librarian for Article1, go to the copy room, set the copier mode correctly, make two

copies, go to George's o�ce, and deliver the copies.

Obviously, the delivery domain is a fairly simple testbed for an autonomous agent.

For planning and learning purposes, all of the delivery actions are discrete and deter-

ministic, and none of the planning problems are particularly di�cult. However, the

delivery domain is illustrative of TRAIL's ability to transfer knowledge across tasks.

Unlike Botworld, the delivery domain allows for a wide variety of goals, requiring

TRAIL to transfer knowledge from one type of problem to another. Also, it shows

that the TRAIL system, originally designed to deal with durative actions and continu-

ous domains, can deal with discrete environments and actions as well. Finally, unlike

the Botworld domain, which can essentially be described propositionally, the world

states in the delivery domain are fundamentally \structured" in that they can only be

described economically using �rst-order logic. We will examine this issue in further

detail in Section 3.3.

1.2.3 The Flight Simulator

The third problem domain, and certainly the most interesting, is the Silicon Graphics,

Inc.
ight simulator.2 Through a socket-based interface, TRAIL can communicate with

the simulator, passing control commands for an aircraft and receiving periodic updates

on the value of a number of state variables. Possible tasks within the environment

include taking o�, maintaining level
ight, navigation, and landing. (The simulator

also allows dog�ght-style combat with other aircraft, which we did not implement in

TRAIL.)

2We gratefully acknowledge the help of Seth Rogers in providing code and assistance with the
simulator interface.

10 CHAPTER 1. INTRODUCTION

The main mechanismby which TRAIL controls the aircraft is by setting the position

of the \stick" that controls the elevators and ailerons. (This value corresponds to

the position of the mouse when a human is controlling the simulator.) Moving the

elevators up or down changes the plane's pitch, while moving the ailerons left or right

causes the plane to begin to roll in that direction, eventually causing it to turn. In

addition, TRAIL can also increase or decrease the throttle setting, raise or lower the

aps, or apply the brakes (when the aircraft is on the runway.)

The e�ect of the vertical position of the stick on the plane's pitch is in general

highly non-linear { a series of small changes will have no detectable e�ect, until the

setting reaches a certain level, at which point the pitch of the aircraft will begin

to change rapidly. TRAIL was not designed to learn behaviors at this low level, so

we have given it a set of PID-based controllers (Bollinger & Du�e 1988) that will

approximately keep the plane's climb rate at a particular level. If, for instance, the

plane is climbing too quickly, the controller will lower the elevators until the nose

of the plane begins to go quickly down, at which point the controller will recenter

the elevators to stabilize the plane. But, during this process, the pitch of the plane

has been reduced signi�cantly. Thus each PID-based controller provides a durative

action, such as \climb at approximately 200 feet per minute", that can be executed

over an inde�nite period of time until some goal has been achieved. (The controllers

are a bit more complicated than a simple PID system, as our original pure PID

controller could not recover from the quick changes in climb rate that were caused by

the non-linear nature of the simulator control.)

In order to control the aircraft, TRAIL also needs to have input from the envi-

ronment. Whenever a state variable changes signi�cantly in the environment, the

simulator sends an update message to TRAIL. (We can de�ne what variables TRAIL

is updated on, and how much change is \signi�cant" { we do not want TRAIL to be

updated every time the altitude changes by a foot, for instance.) At present, TRAIL

makes use of 12 state variables: altitude, speed, throttle setting,
aps setting, x and y

position, heading, roll, climb rate, and the �rst derivatives of heading (closely related

to roll value), roll, and climb rate (related to pitch and speed.)

The
ight simulator is a challenging environment in which to test an autonomous

1.3. OVERVIEW 11

agent. Of course, the
ight-related tasks are both more complicated and less arti�cial

than the Botworld and delivery tasks. The
ight simulator is also a challenging

domain for learning, as it includes many continuous features, actions that are basically

durative rather than discrete, and state variables that change value constantly during

action execution. Furthermore, small timing delays in the interface between TRAIL

and the simulator introduce an element of randomness into the simulation, ensuring

that no two runs will be exactly alike. Experiences with the development of TRAIL

in the
ight simulator led to several of the important features of TRAIL, in particular

tolerances on attribute values and the interval handling mechanism, discussed in

Chapter 5.

The behavior of TRAIL in the
ight simulator domain, as well as some of the

di�culties that it encountered in this domain, are recounted in Sections 6.3 and 6.7

of the thesis.

1.3 Overview

This thesis presents TRAIL (Teleo-Reactive Agent with Inductive Learning), an ar-

chitecture for an autonomous agent that learns to behave independently in new en-

vironments. TRAIL operates by building models that describe the e�ects of actions

in new domains, which can then be used to construct plans that achieve new goals.

TRAIL can deal with complex world state descriptions (as in the delivery domain),

both continuous and discrete state variables (as in the
ight simulator), and both

durative and atomic actions (as in both Botworld and the
ight simulator).

As described earlier, an essential component of the TRAIL architecture is the TR

tree control structure (Nilsson 1994). Chapter 2 describes the teleo-reactive tree

formalism, presents an action representation known as teleo-operators suitable for

describing actions in TR trees, and discusses methods for planning TR trees using

teleo-operators.3

3The more general issues involved in building an agent using teleo-reactive trees are covered in
a paper by Benson and Nilsson (1995). Topics covered include hierarchical trees, di�erent methods
for node selection in tree execution, and arbitration among multiple competing goals.

12 CHAPTER 1. INTRODUCTION

Chapter 3 discusses a number of ways in which learning can be applied to the prob-

lems faced by an autonomous agent, and describes where the action-model learning

methods used by TRAIL �t into the categorization. It then discusses the important

features of an environment that must be considered in designing a system for action-

model learning such as TRAIL. Finally, it presents the overall architecture of TRAIL,

illustrating the relation between planning, learning, and TR execution.

Chapter 4 breaks down the action-model learning problem into two distinct phases:

example generation and concept learning. It then covers the example generation

phase of TRAIL's learning, explaining how TRAIL learns action models by observing

the teacher, how it updates incorrect action models from action failures, how it replans

on-line when action models are corrected, and how it conducts simple experiments to

distinguish among cases of action failure.

Chapter 5 gives a brief introduction to the �eld of Inductive Logic Program-

ming, and then describes how TRAIL uses ILP to learn the preconditions for action

models. TRAIL's learning algorithm is based on a re-examination of the Inductive

Logic Programming problem using the concept of indexical-functional variables(Agre

& Chapman 1987, Schoppers & Shu 1990). The chapter concludes by discussing the

methods that TRAIL uses to include intervals in induced conditions when necessary.

Chapter 6 begins by presenting an overview of the behavior of the complete TRAIL

system, and illustrates the TRAIL learning system through a series of extended exam-

ples in Botworld and the Flight Simulator. It then presents experimental results from

the TRAIL system in the three domains described above. We also discuss methodolo-

gies for evaluation of autonomous learning systems, and examines some of the issues

related to TRAIL's performance in the three domains.

The thesis concludes with a summary and a discussion of possible avenues for

future research.

1.4 Principal Contributions

Following is a list of the main scienti�c contributions of this thesis:

1.4. PRINCIPAL CONTRIBUTIONS 13

� A new model of actions appropriate to reactive agents in continuous domains.

Teleo-reactive trees aid agents in dealing e�ectively with continuous and dy-

namic environments. The use of the teleo-operator formalism (presented in

Section 2.3) allows us to describe the durative actions that are useful in such

domains. In addition, teleo-operators free the learner from attempting to pre-

dict the e�ect of an action on the complete world state. Since most features

of an environment are irrelevant to any particular task, such prediction can be

expensive and unnecessary.

� An implemented action-model learner that operates in non STRIPS-like envi-

ronments. Other existing action-model learning systems assume discrete world

states, atomic actions, deterministic action e�ects, and noise-free state descrip-

tions. Section 3.4 presents the assumptions made by TRAIL about its environ-

ment and contrasts those assumptions with those made by other action-model

learning systems.

� A thorough analysis of the possible causes of action failure for durative actions.

In general, a STRIPS-like atomic action either succeeds or has no e�ect in the

environment. If the action is durative, the action can fail in a number of di�erent

ways. Chapter 4 analyzes the di�erent kinds of action failure for durative actions

and the possible causes of each. This failure analysis is a signi�cant component

of TRAIL's action-model learning.

� The �rst successful use of Inductive Logic Programming in action-model learn-

ing. The machine learning paradigm of Inductive Logic Programming, or ILP, is

a natural candidate for action-model learning. ILP is intended to learn concepts

from examples with more internal structure than the attribute-value examples

used in most concept learning work. Since the descriptions of world states that

arise during action-model learning have such internal structure, ILP should be

applicable to these learning problems. In addition, there is considerable ex-

isting work on noise-handling mechanisms for ILP learners, while the learning

algorithms used in most action-model learners (e.g. Shen's CDL algorithm (Shen

1994)) do not have any noise-handling provisions. The use of ILP in TRAIL is

14 CHAPTER 1. INTRODUCTION

covered in Chapter 5.

Prior to TRAIL, no action-model learning system has made use of ILP. Sablon

and Bruynooghe (1994) proposed using ILP for action-model learning within

their event calculus formalism. However, they have done little work on the

subject beyond their proposal (Sablon 1994). Wang tried applying a FOIL-like

algorithm in her action-model learning system OBSERVER (Wang 1995b) but

found that it did not work well. This is apparently due to certain interactions

between FOIL and the OBSERVER learning mechanism, as OBSERVER has a di�-

cult time recovering from certain types of induction errors that FOIL may make

during learning (Wang 1995a).

� A reconstruction of the ILP system DINUS (D�zeroski, Muggleton & Russell 1992)

from the point of view of indexical-functional variables. We can view the de-

terminate variables (Muggleton & Feng 1990) found in a state representation

as indexical-functional quantities (Agre & Chapman 1987, Schoppers & Shu

1990). This allows us to assign a natural semantics to the induced concepts,

in a manner that we have not previously seen. This view is presented in more

detail in Section 5.4.

� A new way of measuring the learning performance of an autonomous agent.

It is di�cult to evaluate the performance of an integrated architecture for an

autonomous agent. Evaluations of the individual components do not necessarily

provide an accurate evaluation of the entire system, and the variety of goals and

approaches used in autonomous agent learning has prevented the development

of a standardized set of high-level benchmark tasks. In Section 6.4 we discuss

these issues in more detail, and present a performance metric that is appropriate

for TRAIL and other systems that learn in part by observing a teacher.

� An integration of planning, learning, and execution within a uni�ed framework.

The TR tree control structure naturally allows for reactive execution, automated

generation and modi�cation of plans, and model acquisition through learning.

TR trees were introduced by Nilsson (1994), but this thesis is the �rst work to

demonstrate their suitability for automated planning and learning.

Chapter 2

Action Representation in TRAIL

As described in Section 1.1.1, TRAIL makes use of a control structure known as Teleo-

Reactive trees, or TR trees. Virtually all of TRAIL's behavior arises from the execution

of TR trees, and TRAIL's learning is directed towards learning action models that

can be used in the creation of new TR trees. This chapter discusses the TR tree

control structure, the methods by which TRAIL generates new TR trees, and the

representation of actions which TRAIL uses in order to reason about TR trees.

2.1 Teleo-Reactive Trees

A teleo-reactive (TR) program is an agent control program that directs the agent

toward a goal in a manner that continuously takes into account changing environ-

mental circumstances. Teleo-reactive programs were introduced in two papers by

Nilsson (Nilsson 1992, Nilsson 1994). In its simplest form, a TR program consists of

an ordered list of production rules:

K1 ! a1

� � �

Ki ! ai

� � �

Km ! am

15

16 CHAPTER 2. ACTION REPRESENTATION IN TRAIL

The Ki are conditions (on perceptual inputs and on a stored model of the world),

and the ai are actions (on the world or that change the model). In typical usage, the

condition K1 is a goal condition, which is what the program is designed to achieve,

and the action a1 is the null action. In a general TR program, the conditions Ki

may have free variables that are bound when the TR program is called to achieve

a particular ground instance of K1. These bindings are then applied to all the free

variables in the other conditions and actions in the program. Actions in a TR program

may be primitive or may themselves be TR programs. Thus, recursive TR programs

are possible, although they do not play a part in this thesis.

A TR program is interpreted in a manner roughly similar to the way in which

ordered production systems are interpreted: the list of rules is scanned from the top

for the �rst rule whose condition part is satis�ed, and the corresponding action is

then executed. A TR program is designed so that for each rule Ki ! ai, Ki is the

regression, through action ai, of some particular condition higher in the list. That

is, Ki is the weakest condition such that the execution of action ai under ordinary

circumstances will achieve some particular condition, say Kj , higher in the list (with

j < i). We assume that the set of conditions Ki covers most of the situations that

might arise in the course of achieving the goal K1. (Note that we do not require that

the tree be a universal plan, i.e. cover all possible situations.) Therefore, if an action

fails, due to an execution error or the interference of some outside agent, the program

will nevertheless continue working toward the goal in an e�cient way. We will discuss

this issue further in Section 2.1.2.

TR programs di�er substantively from conventional production systems, however,

in that their actions can be durative rather than discrete. A durative action is one that

can continue inde�nitely. For example, a mobile robot is capable of executing the du-

rative action move, which propels the robot ahead (say at constant speed) inde�nitely.

Such an action contrasts with a discrete one, such as move forward one meter. In

a TR program, a durative action continues so long as its corresponding condition re-

mains the highest true condition in the list. When the highest true condition changes,

the action changes correspondingly. Thus, unlike ordinary production systems, the

conditions must be continuously evaluated; the action associated with the currently

2.1. TELEO-REACTIVE TREES 17

highest true condition is always the one being executed. An action terminates only

when its associated condition ceases to be the highest true condition. The regression

condition for TR programs must therefore be rephrased for durative actions: For each

ruleKi ! ai,Ki is the weakest condition such that continuous execution of the action

ai (under ordinary circumstances) eventually achieves some particular condition, say

Kj , with j < i. (The fact that Ki is the weakest such condition implies that, under

ordinary circumstances, it remains true until Kj is achieved.)

Km

Km -1

K1

K2

am

a2

K3

a3

Figure 2.1: A TR Tree

In our work, we have found it convenient to represent a TR program as a tree,

called a TR tree, as shown in Figure 2.1. Suppose two rules in a TR program are

Ki ! ai and Kj ! aj with j < i and with Ki the regression of Kj through action

ai. Then we have nodes in the TR tree corresponding to Ki and Kj and an arc

labeled by ai directed from Ki to Kj. That is, when Ki is the shallowest true node

in the tree, execution of its corresponding action, ai, should achieve Kj . The root

node is labeled with the goal condition and is called the goal node. When two or

more nodes have the same parent, there are correspondingly two or more ways in

which to achieve the parent's condition. Continuous execution of a TR tree would be

achieved by a continuous computation of the shallowest true node and execution of

18 CHAPTER 2. ACTION REPRESENTATION IN TRAIL

its corresponding action.1 We call the shallowest true node in a TR tree the active

node.

In the hierarchy of agent control, we have found TR programs to be most appro-

priate for what might be called mid-level control. Consider the implementation of

a control program for a mobile robot. Many of these control programs are designed

using three layers or levels of control. At the lowest level, classical control theory is

required for the feedback control of motors and other e�ectors. Since there is less

demand for continuous feedback at the highest levels, conventional program control

structures su�ce there. A typical example of such a three-layered architecture is the

SSS architecture of Connell (1992). In the SSS architecture, the top (Symbolic) layer

does overall goal setting and sequencing, the middle (Subsumption) layer selects spe-

ci�c actions, and the lowest (Servo) layer exerts feedback control over the e�ectors.

While SSS does not use TR trees, one could imagine using TR trees for the action

selection level of such an architecture.

The TR formalism is related to a number of other \circuit-based" agent control

methods such as the subsumption architecture (Brooks 1986), universal plans (Schop-

pers 1987), and situated automata (Kaelbling & Rosenschein 1990). Comparisons

with these architectures are discussed in (Nilsson 1994). The TR formalism is advan-

tageous because, as we shall see, it is more readily incorporated in an architecture

that accommodates planning and learning.

2.1.1 Simulating Continuous Execution

In thinking about the semantics of TR programs, it is important to imagine that

the conditions, Ki, and all of their parameters, are being continuously computed.

However, in computational implementations of TR programs, we compute the con-

ditions (and the parameters upon which they depend) at discrete time steps, and

then execute small increments of durative actions. A su�ciently high sampling rate

is chosen|depending on the domain|to approximate continuous computation and

1Ties among equally shallow true nodes can be broken by some arbitrary but �xed tie-breaking
rule.

2.1. TELEO-REACTIVE TREES 19

execution.

This sort of approximation to continuous computation opens the possibility that a

condition might be achieved between time steps without being noticed. For instance,

if a condition in a TR program is satis�ed if and only if the agent is facing within

0.1 degrees of a speci�c desired direction, the agent might turn su�ciently fast that

this condition would hold only between two sampling points|leading the agent to

turn past the desired direction rather than switching to the appropriate next action.

There are at least two obvious solutions to this problem. First, the condition can

be relaxed so that at least one sampling point must fall within it, given the agent's

execution speed and sampling rate. Second, some measure of the time needed to

satisfy the expected next condition can be used to insure that the agent slows down

as that condition is approached. This solution has the e�ect of decreasing the distance

between sampling points when necessary so that again, at least one sampling point will

necessarily fall within the condition region. Both methods have been implemented

successfully for various agent tasks, although the �rst method occasionally results

in activation conditions so weak that the recommended action is no longer always

appropriate.

Approximating continuous computation by searching the entire TR tree at each

time step becomes impractical for su�ciently large TR programs. Therefore, we have

developed a heuristic method of action selection that usually produces the same result

and runs in constant time in nearly all cases regardless of the size of the tree.

In this heuristic method, the agent remembers which node Ki (with associated

action ai) was active during the previous time step. It expects that in the absence of

surprises, Ki will remain active until its parent node Kj (with associated action aj)

becomes active. Therefore, so long as Ki remains true while Kj remains false, ai is

selected as the default action. When and if Kj becomes true, aj will be selected as

the default action. Only when neither Ki nor Kj holds will the agent fail to have a

default action to fall back on.2

2Note that only in this case can we not guarantee constant time execution. Since this case arises
only due to execution failures, it seems reasonable then to expect a reaction delay. Naturally, we
would be forced to provide explicit error-handling routines to handle those execution failures in
which such reaction delays could not be tolerated.

20 CHAPTER 2. ACTION REPRESENTATION IN TRAIL

This default action computation is supplemented by a separate process that scans

through the rest of the tree examining a few nodes on each cycle (only nodes higher

than the default node need be examined.) If this separate process ever �nds a true

node that is higher than the default node, this higher node will be selected as the

active node and the new default. In summary, the agent will execute a normal

sequence of goal-achieving actions (so long as they have their expected e�ects) while

searching for serendipitous situations with whatever extra time it has.

2.1.2 Theoretical Properties of TR Trees

If actions can be guaranteed to have their expected e�ects, we can guarantee that if

any node in a TR tree is active, the tree will eventually achieve its intended e�ect.

The �xed tie-breaking rule that is used for selection of the active node imposes a total

ordering on the nodes in the tree. Once a node Ni has become active, it will remain

active until some node with a higher priority becomes true. Since executing the action

ai is guaranteed to make the node's parent condition become true eventually, some

higher priority node will eventually become active. Since the set of nodes is �nite,

eventually the highest priority node, which is the root node, will become active, and

thus the goal must be achieved.

As a side note, observe that the above argument does not hold in the absence

of a �xed tie-breaking rule among nodes at the same level. Suppose that there are

two nodes Ni and Nj at the same level of the tree such that the action associated

with node Ni is turn-left and the action associated with Nj is turn-right. If the

activating conditions on both nodes are satis�ed, unless a �xed tie-breaking rule is

used, nothing prevents the executer from repeatedly selecting Ni and Nj on alternate

time steps, leaving the agent turning back and forth while never achieving the goal.

In the more realistic case where we cannot guarantee that all actions have their

expected e�ect, we can still guarantee that the goal will be achieved with probability

1 if we make three necessary assumptions:

� The success of each node execution must be an independent event with nonzero

probability. (Note that this implies that multiple executions of the same node

2.1. TELEO-REACTIVE TREES 21

in the tree must be independent events.) We say that the execution of a node

N in a tree is successful if and only if some higher node eventually becomes

true, and N remains active in the meantime. If the execution is unsuccessful,

we refer to this as a node failure.

� If a node fails, it does so by eventually becoming false, rather than simply

remaining true and having no e�ect.

� If a node fails, at least one node in the tree must still be true.

If all of the above conditions hold, then for each node Ni in the tree, ifNi is the current

active node, there is some nonzero probability p(Ni) that the goal will be achieved

without any node failures occurring. Let pmin be the lowest such probability for any

node in the tree. Therefore, for any active node, either the goal will be achieved

without a failure with probability at least pmin, or an action failure will occur leaving

the agent in some other node from which the goal can be achieved with probability at

least pmin. This sequence of repeated attempts forms a series of independent events,

each with probability at least pmin of success. Therefore, with probability 1 the goal

will eventually be achieved.

It is important to note that the above three assumptions usually do not hold in

real domains, particularly the assumption that node failures are independent events.

If a node failure is due to the action of some other agent, it probably cannot be

accurately modeled as a probabilistic event. Even if other agents are not involved,

there may be some unknown but persistent condition in the environment that makes

action failures more likely. Thus, once one failure has occurred, further failures are

more likely. In general, we cannot use the assumption of independent node failures to

model most real environments. Therefore, we cannot guarantee the success of most

TR trees, beyond the claim that the actions work \under ordinary circumstances."

However, it is important to note that this di�culty is not unique to TR trees { any

control program given the same perceptual apparatus and the same environment will

have similar uncertainties in execution.

22 CHAPTER 2. ACTION REPRESENTATION IN TRAIL

2.1.3 Nonlinear Plans and Conjunctive Tree Nodes

We have extended the basic TR tree formalism to deal more e�ciently with certain

kinds of conjunctive conditions. Suppose that a condition K in a TR node is a

conjunction of subconditions: K � C1 ^ C2 ^ � � � ^ Cm. Suppose also that there

are TR programs for achieving each of these subconditions such that once one of

the subconditions, say Ci, is satis�ed, the achievement of any other of them (by

their corresponding TR programs) will not cause Ci to become false. That is, the

TR programs for achieving the subconditions can be executed in any order. In this

case, we can label the TR node with condition K as a conjunctive node, which has

m independently achievable successor nodes in the tree, each labeled by one of the

conjuncts, Ci. (By convention, these successor nodes are called AND nodes, and we

do not label the arcs between the AND nodes and their parent conjunctive node.)

Each AND node is the root of a TR subtree that achieves its condition Ci without

interacting with the other conditions in K, and thus the TR subtrees can be executed

in whatever order circumstances dictate.

A TR tree containing AND nodes can be executed by the usual TR execution

mechanism: we execute that action corresponding to the shallowest true node, not

counting the AND nodes since they have no action labels on the arcs exiting them.

Note that due to the properties of teleo-reactive execution, once we begin executing a

node within a subtree rooted at an AND node, execution of that subtree will continue

(barring unforeseen occurrences) until the condition on the root AND node becomes

true. Therefore, in constructing a conjunctive node, we do not need to worry about

interactions between the actions of nodes in subtrees rooted at di�erent children. We

only need to insure that the actions within a given subtree do not interfere with the

root condition Ci of any other subtree of the conjunctive node.

The use of conjunctive nodes allows us to considerably simplify our TR trees

in certain circumstances. Suppose a node condition K has m subconditions, and

that a plan for each subcondition contains n nodes. Further suppose that these m

subconditions can be achieved in arbitrary order. Then a conjunctive node for K

will have m subtrees, each of size n, for a total of approximately mn nodes. Without

the use of conjunctive nodes, we would need to either arbitrarily impose an ordering

2.2. PLANNING AND TELEO-REACTIVE TREES 23

on the m subgoals, or create subtrees for each of the m! possible orderings of the

subgoals, producing a tree of size m!mn.

An example of a TR tree with AND nodes is shown in Figure 2.2. This tree will

cause a Botworld robot to place two bars at speci�c locations and orientations in the

world and then return to a \home base." Since the acts of placing the two bars can

successfully be done in either order, the program for positioning each bar becomes

an independent subtree. (Note that the goal node itself in Figure 2.2 cannot be split

into non-interacting conjuncts, as the act of placing each bar would interfere with the

condition At(50 50).)

At(50 50)
BarAt(Bar2 200 200 0)

BarAt(Bar2 200 200 0)

get-bar(Bar2) get-bar(Bar3)

goto(50 50)

put-bar(Bar3 250 250 90)put-bar(Bar2 200 200 0)

BarAt(Bar3 250 250 90)BarAt(Bar2 200 200 0)

BarAt(Bar3 250 250 90)

BarAt(Bar3 250 250 90)

not(Holding(?z))
Free(Bar2)

not(Holding(?z))
Free(Bar3)

Holding(Bar3)Holding(Bar2)

Figure 2.2: A TR Tree With Conjunctive Nodes

2.2 Planning and Teleo-Reactive Trees

We have considerable experience writing teleo-reactive programs to control various

agents, including the robots of Botworld, the Silicon Graphics Flight Simulator, and

an actual Nomad 100 robot (Galles 1993). However, each teleo-reactive program we

construct covers only one (possibly parameterized) goal and (usually) some subset of

the possible situations that might arise. It is di�cult for the designer of an agent to

24 CHAPTER 2. ACTION REPRESENTATION IN TRAIL

anticipate in advance all the possible situations and goals that the agent might �nd

itself confronted with. Therefore, we would like our agent to be able to construct its

own teleo-reactive programs in response to new circumstances in which it �nds itself;

this is one of the reasons for selecting TR programs as a control mechanism.

2.2.1 Automated Planning

The automated construction of control programs is the subject of a large branch of

arti�cial intelligence known as automated planning (for a good overview, see Tate et

al. (1990).) Given a current state si and a goal state sg, the purpose of an AI planning

system is to produce a control program, or plan, that is expected to transforms si into

sg. In order to do this, the planner is given a set of operators, also known as action

models, each of which describes how an action transforms the world state. Normally,

a planner does some form of search (Korf 1988) to discover a sequence of operators

that achieves the goal state.

Often, search in an AI planner is done through backward chaining, in which the

planner begins at the goal state sg and works backwards, looking for states from which

sg can be achieved. If the planner has a description of an action a, it can compute the

regression of the goal state description Sg through a. The regression R of Sg through

a is de�ned as the weakest condition that must hold to ensure that taking action a

will achieve Sg. In other words, once R is true, the planner knows how to achieve

Sg. This process is recursively repeated until a condition is found that holds in si, at

which point the planner has found a way to achieve the goal state sg from si.

TR programs closely resemble the search trees constructed by such backward-

chaining AI planning systems. The overall goal corresponds to the root of the tree;

the condition Ki on any non-root node is the regression of the condition Kj on its

parent node, through the action, ai, connecting them. This similarity has allowed us

to develop an automatic planning system that regresses conditions through durative

actions to build a search tree. The search tree is then converted in a straightforward

manner to a TR program.

2.2. PLANNING AND TELEO-REACTIVE TREES 25

2.2.2 Action Models in STRIPS and TRAIL

The action descriptions used by AI planning systems have commonly been represented

using a formalism known as STRIPS operators, �rst used in the planning system

STRIPS (Fikes & Nilsson 1971). STRIPS operators compactly describe the change from

one world state to another when an action is taken in the world. For our purposes,

the exact syntax of STRIPS operators is less important than the assumptions implicit

in their use.

In the STRIPS operator model, each operator describes a primitive, atomic unit of

action that is executed at a particular point in time, and either has a particular desired

e�ect on the world, or has no e�ect at all. This model comes to us directly from the

situation calculus (McCarthy & Hayes 1970), the predecessor of the STRIPS action

representation. In order to describe an action in the situation calculus, we have a state

object STi representing the state si of the world at one particular instant in time, an

action a that is executed in the state, and a function that represents the following

state of the world, designated result(a; STi). If a certain set of preconditions held in

the state represented by STi, then the desired condition would hold in result(a; STi),

else result(a; STi) would be equal to STi.3 STRIPS operators introduced a much

simpler way of reasoning about such world changes, but actions themselves are still

considered to be instantaneous changes in the state.

Many real actions do �t this model, of course. Turning on a light switch, for

instance, is easiest to model as a discrete, instantaneous action that either has an

e�ect or does not. However, there are also many actions that do not �t the model

very well. Consider the act of guiding an airplane down to land on a runway. This has

one main action, pointing the nose of the aircraft downwards, and one main e�ect, the

aircraft reaching the ground. However, the actual action occurs over some period of

time, during which many other relevant variables are changing (speed, altitude, etc.)

Also, the controller needs to be alert to other aspects of the environment during the

action, perhaps changing the setting of the
aps if the approach speed is inappropriate

3The use of conditional e�ects could make this mapping more complex but the principle remains
the same.

26 CHAPTER 2. ACTION REPRESENTATION IN TRAIL

or even circling back around for another try if the end of the runway is approaching

too quickly.

Therefore, in order to reason about actions for an autonomous, reactive agent

we need to use a representation that views actions as continuous processes during

which facts about the world are constantly changing. Reasoning about continuous

action processes is quite complicated in general, but as a start, TRAIL uses operators

which are partitioned according to action-e�ect pairs rather than according to the

actions themselves. An operator in TRAIL, instead of describing a particular action,

describes the use of an action to achieve a particular e�ect. Thus, the action may

be executed for variable amounts of time, and may cause a variety of e�ects other

than the one described by the operator. These representations of actions are known

as teleo-operators, and are discussed in detail in the following section.

Of course, TRAIL is not the only system that uses a non-STRIPS representation

of actions. Recent research in the area of temporal reasoning (Shoham & Goyal

1988) has investigated a variety of representations for actions that are richer than the

STRIPS model, but little of this work has yet been applicable to control programs for

autonomous agents. In particular, it has not generally been applied to the problem of

action-model learning. DeJong's work (DeJong 1994) is a notable exception, which

will be discussed further in Section 4.5.4.

2.3 Teleo-Operators

As stated above, TRAIL's operators are de�ned in terms of action-e�ect pairs rather

than actions themselves. For any literal �i of interest in the environment, and any

durative action aj, consider whether the execution of action aj might ever cause �i

to become true. If so, then we can de�ne a Teleo-OPerator, or TOP, for the (aj; �i)

pair. This TOP describes the process of executing the action aj until �i becomes true.

Therefore a TOP is, in e�ect, a conversion of the durative action aj into an appropriate

atomic unit.4 When a plan calls for the execution of an action corresponding to a

4A durative action can also be converted into atomic units by simply selecting a �xed time of
execution, producing \actions" such as \Move forward for �ve seconds." The planning task is much

2.3. TELEO-OPERATORS 27

TOP, it will be executed as long as necessary to achieve its intended e�ect.

TOPs can be used to model the e�ects of atomic actions as well, as the execution

of the action will then simply occur for a �xed time rather than until some condition

becomes true. In this case, a teleo-operator will look very similar to the STRIPS

operator that would describe the same action.

2.3.1 The Teleo-Operator Formalism

Throughout the remainder of this thesis, we will be using the convention
aj
!�i to

designate the TOP that models the use of action aj to achieve condition �i. The

arrow under the action name aj indicates that aj is to be executed for some period of

time, after which �i should become true. A teleo-operator has four main components,

as shown in Table 2.1.

1. the name of the action, aj.

2. the postcondition literal, �i, representing the intended e�ect of the TOP.

3. the preimage condition, �ij, of the TOP, corresponding roughly to a STRIPS

precondition. The exact semantics of the preimage condition are described
beginning in Section 2.3.2.

4. the set of delete list elements, Dij , of the TOP, corresponding roughly to a
STRIPS delete list with likelihood statistics.

Table 2.1: The Components of a TOP

Teleo-operators are in fact operator schemas, meaning that they may contain

variables and describe a class of operators rather than only one speci�c operator.

The TOP action may of course contain variables; for instance, pickup(?x) describes

the action of picking up an arbitrary object ?x. The postcondition literal may contain

the same variables, and may also contain variables that are not found in the action

name. For instance, the TOP for turning to face a bar in Botworld has action turn

more di�cult when given descriptions of such actions than it is when given TOPs.

28 CHAPTER 2. ACTION REPRESENTATION IN TRAIL

and postcondition FacingBar(?x), indicating that the TOP will work for any binding

of the variable ?x (assuming that the preimage condition is satis�ed, of course.)

We call the set of variables that are found in the postcondition and action the

TOP variables. As in STRIPS, each of these variables can be thought of as universally

quanti�ed - for any binding of the variables, the TOP describes the process of using

the (bound) action to achieve the bound condition. At present, the TR execution

mechanism is not designed to determine bindings for variables in node actions. Thus,

if the action of the TOP contains variables not found in the postcondition, the planner

must assign bindings to these variables during planning.

The preimage condition of the TOP is normally written as a schema of predicate

calculus literals. These literals may contain TOP variables, of course, and may also

contain new variables. The TOP variables will be bound when the TOP is used in a

plan, but the non-TOP variables need to be assigned a semantics. In TRAIL, unbound

variables contained in a TOP preimage are considered to be existentially quanti�ed if

they are found in any unnegated literal, and universally quanti�ed if they are found

only in negated literals.

As an example, if the preimage condition of a pickup(?x)TOP is At(Robot; ?y)^

At(?x; ?y) ^ :Holding(?z), the TOP is applicable to a particular object ?x if there

exists some ?y such that At(Robot; ?y) and At(?x; ?y) both hold, and for all values

of ?z, Holding(?z) does not hold. This interpretation is considerably more intuitive

than the alternative interpretation of :Holding(?z), that there exists at least one ?z

such that Holding(?z) does not hold. Obviously any reasonable environment would

satisfy the latter interpretation.

The rest of this chapter examines the semantics of the preimage condition and the

delete list in more detail, and describes the use of TOPs in planning.

2.3.2 Teleo-Operators in Deterministic Environments

Let us assume for the moment that the e�ects of actions in an agent's environment

are entirely deterministic. Therefore, for any given state of the world in which a TOP

action can be taken, either the action eventually achieves the TOP postcondition or

it does not. The purpose of the TOP preimage condition is to describe the subset of

2.3. TELEO-OPERATORS 29

the possible world states in which the TOP's action will have its intended e�ect.

In order to reason about the e�ects of actions on the world state, we visualize the

set of possible world states as a state space, or a multi-dimensional space in which

each possible world state is a point in the multi-dimensional space. The idea of a state

space is analogous to the idea of a con�guration space in robot motion planning, with

the modi�cation that dimensions can correspond to any fact about the world that is

relevant to the agent, not just physical positions and orientations. (State spaces are

often extremely high-dimensional, but this does not generally present a computational

problem, as we are not interested in reasoning about the geometry of the entire state

space.) Since actions change the world state, an action can be viewed as a transition

within state space. In particular, the execution of a durative action will form a path

through the state space, with each point on the path representing a state of the world

during the durative action.

Following work on directional preimages in robot motion planning (Lozano-P�erez,

Mason & Taylor 1984, Christiansen 1991) we de�ne the preimage region, of a literal,

�i, with respect to a durative action, aj, as the set of world states in which continuous

execution of aj will eventually satisfy �i. The preimage region is a subset of state

space from which the agent can reach the goal region, much like a preimage in robotics

is a subset of physical space from which the robot can reach the goal region.

For a TOP
aj
!�i, we de�ne the preimage condition �ij as the weakest formula such

that:

E�ect rule: In any state in which �ij holds, continuous execution of aj will eventually

satisfy �i.

Closure rule: In any state in which �ij holds, if aj is executed, �ij will remain true

until �i does becomes true.

Intuitively, the preimage condition corresponds to the precondition in a STRIPS-

like operator, and can be used in much the same way to compute the regression of a

goal through a TOP. The planning process using teleo-operators is covered in greater

detail in Section 2.4.

30 CHAPTER 2. ACTION REPRESENTATION IN TRAIL

In order to reason about states of the world, states are generally described as

conjunctions of ground predicate calculus literals. There is actually a many-to-many

relation between states of the world and these state descriptions { some state descrip-

tions describe impossible states of the world, while some distinct states of the world

may be indistinguishable in the state description language. Thus, our descriptions of

states do not correspond perfectly to the actual state of the world.

Ideally, the preimage condition of a TOP corresponds exactly to the preimage

region of that TOP, but as in the case with state descriptions, the vocabulary of

our description language for preimage conditions may not be expressive enough to

describe the preimage region exactly. Therefore, our preimage condition may in fact

describe a subset of the actual preimage region. As an example of this, consider the

diagram shown in Figure 2.3. The diagram shows part of a two-dimensional state

space. The dark region corresponds to the area where some literal � holds. The

shaded region shows the preimage region of that literal with respect to some action a.

However, suppose our description language only allows concepts to be described as

axis-parallel rectangles in the given state space. In that case, the region described by

the preimage condition will correspond to only a subset of the true preimage region.

One possible such subset is shown in the �gure by the dark rectangle.

Preimage Region

Goal Region

States Where Preimage Condition Holds

Figure 2.3: A Preimage Region and Preimage Condition

The closure rule in the de�nition of the preimage condition arises from this fact.

Note that the actual preimage region can be said to be \closed" under execution of

action aj. If the agent is in some state from which aj should eventually achieve �i,

2.3. TELEO-OPERATORS 31

the state in the next instant will either be one in which �i holds or one in which,

again, aj will eventually achieve �i. Therefore, execution of aj can never carry the

agent outside the preimage region before �i has become true. (Remember that, for

the moment, we are assuming that e�ects are deterministic and that there are no

execution errors.) This corresponds very naturally to the execution mechanism for

TR trees presented in Section 2.1; once a node Ni becomes active, it should remain

active until its parent node becomes true. This is guaranteed to happen if and only

if the closure rule holds for the condition and action of the node Ni. Therefore, we

require that preimage conditions of TOPs have this same closure property, that �ij

must remain true throughout execution until �i becomes true. (Note that there is no

way of telling from the diagram in Figure 2.3 whether the preimage condition does

satisfy the closure rule.)

2.3.3 Teleo-Operators in Non-Deterministic Environments

The de�nitions in the previous section all assume that the world is entirely deter-

ministic, and thus any state of the world is either inside or outside the preimage

region. However, if the e�ects of actions are nondeterministic, it may no longer be

possible to classify states as either de�nitely inside or outside the preimage region.

There may be many states in which the action has some probability p (0 < p < 1)

of achieving the TOP postcondition. One could then de�ne the preimage region as

the set of states where the probability of achieving �i is at least some threshold pmin.

However, this de�nition does not provide a satisfying counterpart to the closure rule.

More importantly, it is not a very practical de�nition. In most of the environments

we are dealing with, we will not have a complete environmental model, so we may not

know the exact probability that an action will have a particular e�ect in a particular

state. Furthermore, the planner does not actually need action models with an exact

probabilistic semantics.

Our solution to the nondeterminism problem is the same one that we adopted

earlier when de�ning teleo-reactive programs. Recall the de�nition of a condition in

a TR tree node: \the weakest condition such that execution of the action associated

with the arc under ordinary circumstances achieves the condition associated with the

32 CHAPTER 2. ACTION REPRESENTATION IN TRAIL

parent." We did not de�ne \ordinary circumstances" any more precisely, leaving the

interpretation of this condition up to the programmer. We adopt the same convention

for teleo-operators in non-deterministic environments: the preimage condition is the

weakest condition such that execution of aj under ordinary circumstances will achieve

�i while maintaining �ij until �i becomes true. A human who is designing teleo-

operators is free to write operators that do not work 100% of the time, while an

automated learning system that is learning teleo-operators (as we will discuss in a

Section 2.5) can learn imperfect TOPs. Therefore, we also associate with each TOP

a \success rate" that estimates the probability that �i will be achieved given that �ij

holds and the TOP is executed.

2.3.4 Side E�ects of Teleo-Operators

When we conceptualize operators in terms of action-e�ect pairs rather than in terms

of atomic action executions, we are focusing on one particular desired e�ect of the

action. However, actions will usually have other e�ects as well. If an agent is using

teleo-operators to plan for conjunctive goals, it will need to consider these other

e�ects. Suppose the agent is planning to achieve some condition � ^ � using a teleo-

operator
a
!�. There are at least three possible circumstances:

� a may not a�ect condition �.

� a may cause � as well as � to become true

� a may cause � to become false before � becomes true

In the �rst case, the planner can create a plan to achieve � and then use the TOP to

achieve � as well. In the second case, the planner can simply use the TOP to achieve

both � and �. In the third case, the planner will either need to achieve � �rst or use

some other TOP to achieve �. In general, in order to compute the regression of �^�

through a TOP, the planner will need to take into account the possible e�ects of the

TOP on �.

Therefore, the teleo-operator model includes a \delete list" of conditions which

may become false during execution. A condition � is included in the delete list of a

2.3. TELEO-OPERATORS 33

TOP
a
!� if there is some state s in its preimage region such that � is true in s but �

is false at some point along the path (through state space) taken while a is executed,

between s and the �rst state in which � holds.

Note that � is still in the delete list even if it could be guaranteed that � would

become true again by the time � becomes true. This is due to the fact that the teleo-

reactive tree built from the TOP is being continuously interpreted during execution.

Suppose the plan segment shown in Figure 2.4 is generated. If node Ni is active and

the agent begins executing a, the plan will only work if we are guaranteed that �

will remain true continuously until �^� becomes true. If � may become false during

the execution of a, Ni will no longer be the active node and the agent will take some

other action. Therefore, we require that � must be on the delete list unless it cannot

become false while a is being executed from the preimage region of
a
!�.

φ

φ λ

a

N i

Figure 2.4: A TR Node With a Conjunctive Goal Condition

The deletion of conditions during execution will, in general, not be deterministic.

It may be that the e�ects of actions themselves are nondeterministic, or it may be

that the condition will become false only if the agent begins in a certain part of the

preimage region. Therefore, it is desirable to keep track of the frequency of these

e�ects for use in planning; a delete list e�ect that is very unlikely may not prevent

the agent from constructing a plan, as long as the agent does not need to have a

plan that is guaranteed to be correct. Thus, when TRAIL's learner constructs teleo-

operators, it records the likelihood of each of the delete list elements, for later use in

planning. Further details on the learning process are found in Chapter 5.

34 CHAPTER 2. ACTION REPRESENTATION IN TRAIL

Note that in fact it may be the case that the delete list e�ects are conditional, i.e.

they only occur when some other conditions are true in the environment. However,

learning such dependencies greatly increases the complexity of learning, as the learner

would need to learn \preimage" regions for each possible side e�ect. Rather than move

further in the direction of building a complete model of the environment, we have

chosen for the moment to keep side e�ect statistics based on the cases actually seen

during learning. This issue is discussed somewhat further in the Future Work section

of Chapter 7.

2.3.5 Semantics of Delete List Elements

Suppose that we are regressing a condition � ^ � through a TOP
a
!��, where � is a

conjunction of one or more literals and �� is a (possibly) non-ground literal that uni�es

with �. The uni�cation of � and �� will produce a binding for the TOP variables.

Given this binding, the planner needs to be able to determine which literals in �

match the delete list elements of the TOP. If a delete list element � has probability

p, any literal in � that matches � will reduce the probability of success of the action

by a factor of p.

For condition-matching purposes, there are four di�erent categories of delete list

elements:

� Literals without arguments. For instance, picking up a bar makes the propo-

sition NotHolding become false. Literals in � can be matched with these con-

ditions directly.

� Literals containing only TOP variables. For instance, executing the action

pickup(?x) makes the condition Free(?x) become false. Given a binding for

the TOP variables, all the variables in the delete list element will be bound, so

literals in � can again be matched directly with the bound delete list elements.

� Positive literals containing unbound variables. For instance, a goto ac-

tion would cause the robot to no longer be at its previous location. Therefore,

we would include the condition At(Robot; ?y) as a delete-list element of the TOP

2.3. TELEO-OPERATORS 35

goto(?x)
! At(Robot; ?x). The intended interpretation of such a delete-list element

is that for any condition in the environment that matches the element, there is

a probability p that it will become false during execution of the TOP. Literals

in � can be matched with these delete list elements by an obvious variant of the

standard uni�cation algorithm.

� Negated literals containing unbound variables. We interpret such literals

as meaning that if there is a universally quanti�ed negated literal in �, such as

:Holding(?z), the presence of the same negated unbound literal in the delete

list means that this universal condition may become false during execution of

the TOP. For instance, if we apply the TOP
grab
! Holding(?x) with ?x bound to

Bar1, the TOP should delete the general condition :Holding(?z) as well as the

more speci�c condition :Holding(Bar1). (Note that these negative delete list

elements could ordinarily be computed by simply examining the non-negated

e�ects of the TOP; however, as described in the next section, TRAIL does not

keep detailed statistics on other non-negated TOP e�ects.)

There is also a possible alternative interpretation of a negated delete list el-

ement such as :Holding(?z): for any speci�c binding of some variable ?y, it

expresses the chance that :Holding(?y) becomes false. However, the semantics

of this interpretation are not well de�ned. Consider a delete list element such as

:Facing(?z). If we assume that there are an in�nite number of objects in the

world, and that any particular turn operation only causes the robot to be facing

a �nite number of objects (perhaps Facing can only hold for nearby objects),

then the probability p that turn will cause Facing(?y) to become true for some

arbitrary value of ?y is zero. Even if we make some assumption about the num-

ber of possible bindings of ?y, such an assumption is essentially arbitrary and

not likely to be very meaningful. Therefore we adopt the interpretation from

the previous paragraph.

36 CHAPTER 2. ACTION REPRESENTATION IN TRAIL

2.3.6 Add-List Elements

In STRIPS, the Add List contains literals that are expected to become true as a result

of executing the operator. Since TOPs are de�ned with respect to action-e�ect pairs,

there is one particular e�ect that is designated as the desired e�ect of the TOP, but

there of course may also be other conditions that become true during execution.

These conditions are roughly analogous to the delete list conditions that were

discussed in the previous sections. However, there is an important di�erence in the

way they could be used. Delete list elements are used entirely to prevent incorrect

regressions in which the TOP causes some important side condition to become false

before the main e�ect occurs. Add list elements could be used this way as well,

insuring that negated literals are correctly regressed through TOPs. However, the

correct regression of negated literals is already handled by mechanisms discussed in

the previous section. Therefore, it is not necessary to use them in this way.

Instead, add list elements can sometimes be employed to make the regressed con-

ditions simpler. If a condition � ^ � is being regressed through a TOP
a
!�, and one

of the side e�ects of the TOP is to make � as well as � true, then the regression

should actually be T rather than �. If we can �nd side e�ects with su�ciently high

probabilities, this can simplify the planning task somewhat.

However, such regression has an additional complexity due to the TR interpre-

tation mechanism. If the side e�ect � becomes true only when action a causes � to

change from false to true, then executing the TOP will only cause � to become true

if � is false to begin with. This di�culty has actually been observed to occur in the

Botworld domain, as follows:

The TOP
backward
�! FacingMidline(?x) moves the bot backward until it is facing

the bar midline. If the bot is known to be parallel to the bar, this should always

work, since if the bot is not already facing the midline, it is facing away from it and

backing up will cause it to cross the midline. Thus, one reasonable preimage estimate

for the TOP is ParallelT o(?x). Now, this TOP, when executed, always has the side

e�ect of causing OnMidline(?x) to become true since the bot is on the midline at

the point that FacingMidline(?x) becomes true. Suppose that OnMidline(?x) is

2.3. TELEO-OPERATORS 37

thus included as a guaranteed add-list element of the TOP. Therefore, the regres-

sion of the condition OnMidline(Bar1) ^ FacingMidline(Bar1) through the TOP
backward
�! FacingMidline(?x) would be ParallelT o(Bar1). This regression results in

the plan segment shown in Figure 2.5. But when the plan is actually applied, the bot

may get into a situation where ParallelT o(?x) ^ FacingMidline(?x) holds. Thus,

node N1 in the �gure is activated, and the bot continues to move backward inde�nitely

without ever causing its parent node to become true.

N 1
ParallelTo(Bar1)

FacingMidline(Bar1)

OnMidline(Bar1)

backward

Figure 2.5: A TR Node Created Using a Faulty Add-List Element

Obviously, this problem could be solved for this particular instance by simply

revising the set of predicates used in the domain (for instance, we might make

OnMidline(?x) � :FacingMidline(?x).) However, the need for this particular con-

straint only became clear after extensive experimentation with the Botworld domain.

There is no reason to expect the designers of future domains to be able to concep-

tualize their domain so as to avoid all such potential di�culties. And the process of

later human modi�cation of a domain is time-consuming and di�cult. Therefore, in

designing TRAIL, we attempted to include mechanisms that could deal with domain

descriptions that may be imperfect without requiring human intervention.

Therefore, due to situations such as the OnMidline add-list di�culty, a condition

can only be a reliable add list element if it is in fact a logical consequent of the

goal of the TOP. Therefore, our use of add list elements in simplifying regressions is

limited to domain axioms specifying that one literal implies another. These domain

axioms can either be speci�ed by the designer of the domain or learned through a

quite straightforward process of keeping statistics on the co-occurrence of predicates.

38 CHAPTER 2. ACTION REPRESENTATION IN TRAIL

2.3.7 An Example of a TOP

As an example of a complete teleo-operator, we describe in this section a typical TOP,

which is used to achieve the predicate AtGrabbingDist(?x) using the forward action.

(Recall that AtGrabbingDist(?x) is true if and only if the bot is a particular distance

from the center of bar ?x, whether or not the bot is aligned with the bar midline.)

The TOP itself is shown in Figure 2.6.

Postcondition: AtGrabbingDist(?x)
Action: forward

Preimage Condition: FacingBar(?x)_ :TooFar(?x)
Success Rate: 95%
Average Time: 75 � 25
Delete List: TooFar(?x) 100%

FacingMidline(?x) 15%
OnMidline(?x) 10%
FacingBar(?x) 5%
AtGrabbingDist(?y) 100%
: : :

Add List: :TooFar(?x)
Instances: : : :

Figure 2.6: A Sample TOP

The postcondition and action of the TOP are self-explanatory. The only TOP

variable in this TOP is ?x, which refers to the bar that is being approached. Note

that the precondition and all but one of the delete list elements are de�ned in terms

of ?x. (The other delete list element includes the unbound variable ?y, and will be

discussed below.)

The preimage condition of the TOP is relatively straightforward. There are two

conditions under which moving forward is guaranteed to achieveAtGrabbingDist(?x).

First, if the bot is very close to bar ?x, moving forward will eventually cause it to

get far enough from the bar that AtGrabbingDist(?x) will become true, hence the

:TooFar(?x) disjunct in the preimage condition. Second, if the bot is further from

the bar, then as long as it is approximately facing the bar, moving forward will bring

2.3. TELEO-OPERATORS 39

the bot close enough that AtGrabbingDist(?x) becomes true. Thus, the predicate

FacingBar(?x) is included as a disjunct of the preimage condition. However, note

that FacingBar(?x) and :TooFar(?x) do not completely cover the true preimage

region of the TOP. Suppose the bot is further away from the bar than the grabbing

distance, and is facing a few degrees to the right or left of the bar. In this case,

moving forward may well cause AtGrabbingDist(?x) to become true. However, given

the set of Botworld predicates presented in Section 1.2.1, there is no way for TRAIL

to include this region in the preimage condition, short of changing the preimage to T .

This is a good example of the situation depicted in Figure 2.3, in which the preimage

description language is insu�ciently expressive to describe the actual preimage of a

teleo-operator. (However, in this case, this limitation is probably an advantage for

TRAIL as the given preimage condition is very usable for planning.)

The success rate of the TOP expresses the percentage of the time that the TOP is

applied that it successfully achieves the postcondition. This TOP actually fails about

5% of the time, due to the inaccuracies of the FacingBar predicate �rst discussed in

Section 1.2.1. The 5% failure rate re
ects those runs in which the bot is facing the

bar from a distance, but is not quite facing the bar directly, causing FacingBar(?x)

to become false before the postcondition becomes true. Thus, the preimage condition

becomes false, and TRAIL detects a so-called activation failure, as will be presented

in Section 4.4.1.

The next item is the TOP execution time. TRAILmaintains the mean and standard

deviation of the execution times for runs of each TOP. TRAIL will later use these

times to determine whether the TOP has failed during execution. (This process is

also discussed in Section 4.4.1.)

Next, the TOP has a list of delete list elements, corresponding to predicates that

might become false during execution of the TOP. The �rst condition, TooFar(?x),

is guaranteed to become false since it is inconsistent with the postcondition of the

TOP. The next condition, FacingMidline(?x), might become false in the case where

the bot is very near the bar and facing the midline. As it moves forward, it crosses

the midline before reaching the correct grabbing distance. Thus, FacingMidline(?x)

could become false during execution of the TOP and is included as a delete list

40 CHAPTER 2. ACTION REPRESENTATION IN TRAIL

element.

Now, we skip to the �fth delete list element, AtGrabbingDist(?y). Recall that

since ?y is an unbound variable, the elementAtGrabbingDist(?y) matches any literals

of the form AtGrabbingDist() in the state description. Thus, the delete list element

expresses the fact that if the bot is at the proper grabbing position for some other

bar ?y, moving forward to the grabbing position for bar ?x will change that fact.5

In contrast to the delete list, the add list of the TOP is quite simple. As was

explained in Section 2.3.6, the add list only contains literals that are implied by

the postcondition. In this case, the add list contains only the obvious condition

:TooFar(?x).

Finally, the TOP includes a pointer to a list of instances in which TRAIL has

observed the TOP either succeed or fail. These instances are retained in case TRAIL

later observes successes or failures that contradict the current TOP preimage, allowing

TRAIL to learn from the unexpected success or failure. TRAIL's learning process is

discussed in detail in the remainder of this thesis, beginning in Section 2.5.

2.4 The Use of Teleo-Operators in Planning

Given a set of TOPs, a goal condition, and an initial state, TRAIL can use well-known

AI planning techniques to create a teleo-reactive tree that is expected to achieve the

goal. Recall that a TR tree is very similar to the search tree that would be generated

by some form of backward-chaining planner. The root node corresponds to the goal

condition, and the conditions on nodes further down in the tree are simply regressions

of their parent nodes through some TOP. At least one leaf node of the tree must be

labeled with a condition that is true in the initial state; this is the point at which the

search was terminated. Other branches in the tree correspond to other paths that

were searched during planning; they may or may not have leaf nodes that are true in

the initial state.

5TRAIL assumes that the postcondition of a TOP takes precedence over any delete list elements
of that TOP, thus avoiding any confusion over whether AtGrabbingDist(?x) should be deleted from
the state description.

2.4. THE USE OF TELEO-OPERATORS IN PLANNING 41

Thus, in order to create a plan, TRAIL does depth-�rst iterative deepening search

(Korf 1985), beginning with the goal node as the root. Search continues until a node is

found that is true in the initial state. At this point, the remainder of that depth level

is searched, potentially producing alternative plan branches with the same length.

Branches of the search that do not end in leaf nodes that are true in the initial state

can either be retained, potentially allowing the tree to cover additional situations, or

pruned as likely to be irrelevant. TRAIL prunes these unsuccessful branches, resulting

in relatively small trees that may still have multiple branches (due to the fact that

the entire level is searched.) Thus, in TRAIL, all leaf nodes are initially true when a

tree is created.

Nonlinear plans with conjunctive nodes are created using essentially the same

search mechanism. When the planner is attempting to plan a conjunctive goal or

subgoal, it tries to construct a plan that treats each of the m conjuncts as an in-

dependent subgoal. Meanwhile, it also creates a di�erent branch that treats the

conjunction as a single goal and searches backwards from there. If the planner can-

not construct non-interfering plans for the individual conjuncts, it can still construct

a linear plan for the goal by regressing the entire conjunction through TOPs.6

Recall that TR trees can also be hierarchical, in that the actions associated with

a node can be calls to other TR trees as well as primitive actions. In order to

create hierarchical trees during planning, the planner needs to have descriptions of

higher level operators, similar to macro-operators, that can be used for top-level

planning. Descriptions of these higher-level operators can be used in the same way as

TOPs are used for lower-level planning. The high-level operators themselves are also

implemented as TR programs, which can be generated by the planner and generalized

by replacing constants with variables, as is done in Explanation-Based Generalization

(Mitchell, Keller & Kedar-Cabelli 1986). TRAIL does not presently learn higher-level

operators; this issue is very important in scaling up to more complicated domains and

will be discussed further in Section 7.2.

The TRAIL planner does not represent any advances of the state of the art in

planning systems, but it has proven adequate for our learning experiments. Plans

6The details of this planning process are not important to the rest of this thesis.

42 CHAPTER 2. ACTION REPRESENTATION IN TRAIL

using the learned TOPs are generated in anywhere from a few seconds to about a

minute, depending on the complexity of the task.

2.4.1 Regressing a Condition Through a TOP

The fundamental step in the TR planning process is the backward regression of a

condition through a teleo-operator. This process is very similar to the regression of

a condition through a STRIPS operator. Suppose that a plan node with condition

� ^ � is to be regressed through the TOP
a
!��, where �� uni�es with �. We wish to

generate the correct condition on the child node, along with the probability of success

of the action taken in the child node.

The regression computation begins by �nding the uni�cation � of � and ��. The

basic regressed condition is then �� ^ �, where � is the preimage of the TOP. Note

that since � can contain variables not found in �, the regressed condition may contain

variables. Thus, a TR tree may include conditions containing variables, such as

At(Robot; ?y) ^ At(John; ?y).7

In order to compute the correct regression, the planner also needs to compare the

literals in � to the delete list elements of the TOP, as discussed in Section 2.3.5. Since

delete-list elements are nondeterministic, they are taken into account in the process

of computing the probability of success of the action. The planner begins with the

estimated success rate recorded for the TOP. For each literal in � that matches a

delete list element of the TOP, it records the probability p that the literal will be

deleted. The probability of success of the child node is then multiplied by (1� p). If

the probability of success drops below some threshold, the regression returns F , else

it returns the condition �� ^ � along with the probability that taking action a will

cause � ^ � to become true.

These node success probabilities are used in two di�erent ways in TRAIL. In Sec-

tion 4.4.4 we will see how the learning mechanism uses them to guess whether an

action failure is due to a random execution error or an actual error in the TOP.

7We realize that the regression of conditions containing variables through actions can raise a
number of di�cult questions. These issues did not a�ect the performance of TRAIL and are beyond
the scope of this thesis. See Nilsson (1980) for some further discussion of regression.

2.4. THE USE OF TELEO-OPERATORS IN PLANNING 43

Meanwhile, the planner also uses them to estimate the probability of success for a

branch of the tree. Assuming again that action failures are independent events, the

probability of success for any node Ni in the tree is simply the product of the node

success probabilities for all nodes on the path between Ni and the root node of the

tree. The planner keeps track of these probabilities and terminates search any time

either the regression returns F or the probability of success of the branch drops below

some threshold.

2.4.2 Plan Libraries

If the agent is going to be executing tasks repeatedly over the course of its lifetime, it

will often be advantageous for the agent to keep a library of previously constructed TR

trees. Since each tree was constructed using a set of TOPs, the trees can be generalized

fairly easily by simply substituting variables for constants whenever the TOP indicates

that the value of the constant is not relevant to the plan. The overall process is

very similar to the generalization method used in Explanation-Based Generalization

(Mitchell et al. 1986). Thus, when TRAIL is given a new task, it can examine the

existing trees to �nd out if one is appropriate for the new goal. If a tree is found such

that the goal of the tree is a generalization of the new goal, TRAIL can employ that

tree instead of constructing a new tree through planning.

2.4.3 Iterative Replanning

A key advantage of the TR tree formalism over other reactive control formalisms is

the ease of replanning during execution (Nilsson 1994). Since the trees generated

by the planner or retrieved from the plan library do not usually represent universal

plans, situations may arise during execution that are not covered by any node in

the current tree. Such a circumstance can occur for a variety of reasons, including

nondeterministic action outcomes, execution errors, and the actions of other agents.

Fortunately, these unexpected situations will usually require only an extension of the

existing TR program, rather than a complete replanning.

This extension process is very similar to the original planning process discussed

44 CHAPTER 2. ACTION REPRESENTATION IN TRAIL

earlier. The existing TR tree can be viewed as a partially constructed plan. Thus, in

order to cover a new and unexpected situation, the planner simply does a backward-

chaining search from each node in the current TR program until a condition is reached

which holds in the novel situation.

Since the existing nodes in a TR tree are retained in the replanning process, the

coverage of the tree increases monotonically as the agent gains more experience in the

world. (However, it may decrease if TRAIL's learning mechanism corrects an incorrect

TOP used in the construction of the tree.) As described above, the revised trees can

be kept in a plan library for future use. Thus the agent's TR programs cover an

increasing variety of situations, representative of the situations actually encountered.

Of course, the process of plan extension during execution will cause a delay before

action can be resumed, but we assume that such planning can occur asynchronously

with continuous monitoring of the other active trees in the agent's memory. If a

situation that requires immediate action is likely to arise while the agent is replanning,

the agent will need to have a reactive tree in its memory to insure an appropriate

response The issue of real-time action selection is discussed further under future work

in Section 7.2.

2.5 Correcting Trees Built with Incorrect TOPs

The above sections assume that TRAIL is given a complete and correct set of TOPs

which can be used for planning. However, it is often di�cult for the human designer

to give a complete speci�cation of the e�ects of every action in a form that is useful

for the planner. (We will examine this issue further in the next chapter.) Therefore,

we would like our agent to have the ability to learn these TOPs through experience

in its environment. The remainder of this thesis will discuss the methods that TRAIL

uses for such TOP learning. But regardless of the speci�c learning methods used,

the fact that TOPs are being learned while the agent is acting a�ects the planning

system of the agent.

First of all, incorrect TOPs will often require the agent to do replanning during

execution. Incorrect TOPs will in general cause the planner to construct an incorrect

2.5. CORRECTING TREES BUILT WITH INCORRECT TOPS 45

plan for some goal. This plan will fail during execution (as discussed in Chapter 4,)

allowing TRAIL to correct the faulty TOP through its learning mechanism. Once the

TOP is corrected, the plan will need to be modi�ed so that it is consistent with the

new TOP. This can be done by simply recomputing the regression for each action

arc that used the incorrect TOP. If this modi�es the condition on the child node, the

new condition will need to be regressed through the entire subtree rooted at the child

node. The plan is of course cut o� at any point where the regression produces the

condition F . If this modi�cation process produces a tree in which no condition holds

in the current situation, then TRAIL will need to extend the tree using the iterative

replanning process described in the previous section.

If TRAIL is modifying its set of TOPs through learning, plan reuse is also made

somewhat more complicated. Suppose TRAIL had constructed a TR tree using a set

of TOPs, which are later modi�ed. Then, before reusing the stored tree, it will need

to verify that the stored TR tree is consistent with the updated TOPs. This is true

even if the stored TR tree was successful when used previously: the TR tree may

have been overgeneralized during storage (if the TOPs used were overly general) or

there may be an error in a branch of the tree that was not previously executed. In

either case, if TRAIL discovers that the tree is incorrect, it can use the same process

described above, recomputing the regressions and extending the tree through iterative

replanning. Once again, this iterative replanning is usually considerably simpler than

a complete replanning of the tree from scratch.

46 CHAPTER 2. ACTION REPRESENTATION IN TRAIL

Chapter 3

Learning in Autonomous Agents

Machine learning is a large and varied �eld, with methods ranging from sub-symbolic

methods such as neural networks to high-level symbolic methods such as Inductive

Logic Programming. In this thesis, however, we are interested not so much in the

learning methods themselves as in the application of these methods to autonomous

agents, in particular those that modify their behavior in response to their experiences

in their environments.

The design of a learning mechanism for a particular autonomous agent depends on

a number of factors. First of all, it depends on what the agent is trying to learn. Is it

trying to learn to achieve one particular goal? Does it need to transfer knowledge from

one task to another? Is it trying to develop a complete model of the environment?

Second, it depends on what kind of help is available to the agent. Does it have some

initial knowledge of the environment? Does a trainer tell it what it is doing wrong?

Finally, it depends on the type of environment the agent will be in. For instance,

continuous and dynamic environments are harder to learn from than discrete, static

ones.

The remainder of this chapter discusses these issues, and describes how they af-

fected our choices for TRAIL's learning algorithm.

47

48 CHAPTER 3. LEARNING IN AUTONOMOUS AGENTS

3.1 Approaches to Autonomous Agent Learning

Learning from an environment can take many forms. At one extreme, we might choose

to build a complete model of the environment. Given such a model, the agent can use

standard graph search techniques to select appropriate actions. At the other extreme,

we might simply build a large table stating what to do in every possible situation.

Clearly, each method has its advantages and disadvantages. In this section, we present

four di�erent categories of autonomous agent learning and discuss the bene�ts and

drawbacks of each.

3.1.1 Policy Learning

Our �rst method of learning for autonomous agents is based on the straightforward

idea of learning what to do in every possible situation. If we assume that the goals

of a learning agent are �xed, then the agent has no need to develop a model of the

environment itself. Instead, it su�ces simply to learn how to respond to every case

that might arise. We call this approach policy learning because the agent is learning

a policy of what action to take rather than learning about the environment itself.

The purest implementation of the policy learning approach can be found in the

�eld of behavioral cloning (Urban�ci�c & Bratko 1994, Sammut, Hurst, Kedzier &

Michie 1992). In behavioral cloning, the agent observes another agent (usually a

human trainer) successfully performing the task, and records what the training agent

does in each situation. When faced with a situation in the future, the clone agent

compares the situation to situations in which it saw the trainer act and chooses an

appropriate response. Behavioral cloning has many desirable properties, including an

ability to learn from few trials and an ability to perform more consistently on many

tasks than the human trainers it learned from (Bratko, Urban�ci�c & Sammut 1995).

It might seem that this approach would be di�cult to implement in complex en-

vironments; after all, it must specify what to do in every possible situation, including

every possible value of each real-valued variable. However, behavioral cloning can

make use of the fact that the action that should be taken is usually identical over

large portions of the possible state space. Once the learner has observed an action

3.1. APPROACHES TO AUTONOMOUS AGENT LEARNING 49

for a subset of the possible states, it can generalize over its inputs to produce a policy

that covers new states as well. Neural network methods (Hertz, Krough & Palmer

1991) and modern concept learning algorithms such as C4.5 (Quinlan 1992) are very

good at creating simple policies from examples, including appropriate discretizations

of continuous input variables. On the other hand, the learner might simply record the

observed state-action pairings explicitly and use a nearest-neighbor matching scheme

to determine the correct action, as was done in the robot learning work of Moore

(1990).

An impressive application of behavioral cloning is found in the ALVINN system

(Pomerleau 1991, Pomerleau 1993). Steering a car or van is a natural task for be-

havioral cloning, as most of the time the goal is essentially �xed { stay on the road

and within the lane. ALVINN observed the actions of a human driver and used a

back-propagation neural network to generalize a mapping from views of the road to

steering directions. ALVINN has successfully driven on unlined paved paths, jeep

trails, city streets, and interstate highways.

The various forms of behavioral cloning all represent supervised approaches to

policy learning, in which the learner is given a set of correct state-action pairings.

Policy learning can also be done by unsupervised learners, using reinforcement learn-

ing methods such as Q-learning (Watkins 1989). In Q-learning, the agent learns the

value of each action in each particular state, assuming that certain states have a nu-

merical \reward" associated with them. Learning is essentially done by propagating

rewards backward through the actions that led to them, eventually converging on

an estimate for the expected value of each action that might be taken in each state.

The learned policy is thus to choose the action that maximizes the expected future

reward. Q-learning has been applied successfully in a number of agents, such as a

box-pushing physical robot (Mahadevan & Connell 1992).

Both behavioral cloning and Q-learning su�er from the obvious problem of in
ex-

ibility in the face of di�erent goals that an agent might have. The policy learned for

one task may well be useless for another. (If the goals do vary, we could still use this

approach by assuming that the goal is part of the agent's environment. Unless there

are only a few possible goals, this approach makes the state space so large as to be

50 CHAPTER 3. LEARNING IN AUTONOMOUS AGENTS

completely intractable.) Thus, if our autonomous agent is to be versatile enough to

handle a variety of possible goals, it will need to learn at least a partial model of its

environment.

3.1.2 Environmental Modeling

Our next strategy for learning from the environment takes an almost entirely opposite

approach. Rather than explicitly learn what actions to take, an agent may be able to

learn a complete description of the environment itself. Building such a model is clearly

the safest way to achieve good performance; if an agent has a complete description of

the environment, it can (theoretically at least) compute its optimal behavior for any

goal and any situation in which it �nds itself.

Of course, in order to learn such a description, the agent must �rst make some

assumption about the nature of the environment. If we assume that the environment

can be modeled as a deterministic �nite state automaton, where the inputs are the

agent's actions and the outputs are the agent's perceptions, then Rivest and Schapire's

(1993) extension of Angluin's (1987) L� algorithm can in principle be used to produce

an exact model of the environmentwith high probability. Somewhat more realistically,

the world can be modeled as an action-driven hidden Markov model (Rabiner & Juang

1986), in which actions nondeterministicallymove the environment to some new state.

A variety of algorithms allow for the approximation of small hidden Markov models,

such as the Baum-Welch or forward-backward algorithm (Baum, Petrie, Soules &

Weiss 1970, Rabiner 1990).

The choice of model is very important to any attempt to accurately learn an en-

vironment. Most environments cannot be modeled accurately as deterministic �nite

automata, due to noise, other agents, or simply random action e�ects. Most environ-

ments can be modeled as hidden Markov models, although real-valued variables still

present a problem - any environment containing a real-valued variable can be in an

in�nite number of possible states. Of course, such a state space can be made �nite

by discretizing the real-valued variables, but how best to do these discretizations is

an open question.

The main di�culty with this style of learning lies in the complexity of scaling

3.1. APPROACHES TO AUTONOMOUS AGENT LEARNING 51

up the learning to environments that are more complicated than the small examples

usually used to illustrate the learning techniques. Hidden Markov models of envi-

ronments can often be very large, especially if they use discretizations of real-valued

variables, and the various learning algorithms converge very slowly, if they converge

at all. At this point, it appears extremely di�cult for hidden Markov model learn-

ing algorithms to cope with environments of more than about 16 states (Littman,

Cassandra & Kaelbling 1995). Thus, as we saw in behavioral cloning, our learning

agent will need to abstract its learned models from the details of the particular states

involved.

3.1.3 Action Model Learning

A more practical approach to learning a model of an environment can be found by

considering the abstraction methods used by the planning community. The introduc-

tion of STRIPS operators (Fikes & Nilsson 1971) and similar representations allowed

planners to avoid having to consider all attributes of a possible world state. Using

STRIPS operators, a planner can reason about only those aspects of the world that

are relevant to a particular action (namely, the conditions that must be true for it

to succeed, and the conditions that may change as a result.) Such operator schemas

abstract the behavior of the environment into forms that can more easily be used by

the agent to construct plans to achieve its goals. And unlike behavioral policies, oper-

ator schemas also allow for the natural transfer of learning across tasks, as operators

learned in the context of one task can later be used in planning to achieve another

task.

In the lowest-level case, these operator schemas simply take the form of local mod-

els of the environment from the agent's sensory perspective. Mahadevan (1992) has

implemented a system in which action models are pairs of certainty grids (Moravec

1988) connected by actions, representing the e�ects of a one-step action from the per-

spective of the robot. These models can be used for action planning, and demonstrate

a transfer of knowledge across tasks on both simulated and real robots. Another low-

level action modeling system, SPLICE (Rogers & Laird 1996), learns models of control

actions in continuous domains by developing local models of the e�ect of a control

52 CHAPTER 3. LEARNING IN AUTONOMOUS AGENTS

action on a target variable. However, at present SPLICE is limited to solving problems

involving a single monotonic variable and a single control input.

At a higher level, the learning of symbolic models of actions for planning has been

the subject of a large body of recent work, most notably by Shen (1989, 1994), Gil

(1992), and Wang (1994, 1995b). The work of each of these earlier authors will be

discussed and compared with TRAIL in a number of places in the remainder of this

thesis.

As was true in the case of environmental modeling, an action-model learner must

make assumptions about the properties of the environment in which it is learning.

These assumptions will be discussed further in Sections 3.3 and 3.4; for now we will

just mention that they have a signi�cant e�ect on the process of action-model learning.

As stated earlier, TRAIL builds on these existing action-model-learning systems by

extending action-model learning to dynamic, continuous domains.

3.1.4 Specialized Knowledge Acquisition

Before we move on, there is one more important category of learning for autonomous

agents that deserves mention. It is often possible to program most of the necessary

knowledge into an agent while leaving one particular type of knowledge to be acquired

from the environment. The most obvious example of such learning for autonomous

agents is map learning - there have been a number of impressive experiments in which

robots have been programmed with general navigational knowledge and have learned

to navigate successfully in a new environment by learning a map of it. What di�er-

entiates these experiments from other types of learning from the environment is that

the knowledge that must be acquired is of a particular format (namely, geometrical

knowledge) and does not involve the complexity involved in, say, a hidden Markov

model of the environment.

Such map learning is generally done by learning to identify distinctive locations,

based on the robot's sensor readings. The robot then builds a topological map con-

necting the locations, which allows the robot to navigate successfully through the

environment. Examples of such map learning are found in the work of Kuipers and

Byun (1991), Galles (1993), and Yamauchi and Langley (1996).

3.2. LEARNING FROM EXPLORATION AND TEACHING 53

3.2 Learning From Exploration and Teaching

For any given learning task, the di�culty of the task varies considerably depending

on how much help is given to the learner by a human user. The learner may be

asked to act completely independently, it may be given partial information about

the environment beforehand, or it may have an on-line trainer that either makes

suggestions while it is learning or provides demonstrations of successful behavior.

Independent learning is clearly the most impressive form of learning. Drescher

(1991) has proposed a schema mechanism learner that operates in this manner.

Drescher's system is a tabula rasa agent that tries to replicate Piaget's stages of

learning, beginning with the simple observation that moving its hand to the right

causes the agent to \see" its hand to the right of where it was before. From there,

it is supposed to construct successively more complicated theories about the world.

However, in practice it does not move much beyond connecting motor actions to sen-

sory perceptions, falling considerably short of hoped-for high-level concepts such as

object permanence.

The main di�culty with completely autonomous learning is one of exploration. If

the environment has a very regular structure, an agent can learn the regularities of the

world without actually exploring it in detail. The action-model learning system LIVE

(Shen 1994) takes advantage of this fact in the Towers of Hanoi domain { once it has

learned the rules for moving disks around, it can solve arbitrary problems even though

it has not seen very many of the 3n possible world states. However, most environments

have considerably less regularity than Towers of Hanoi. For example, consider the

task of grabbing a bar in the Botworld domain. The precondition for the grab action

to succeed is in fact the conjunction of the four conditions AtGrabbingDistance,

FacingBar, AlignedWith, and :Holding. If the bot tries to grab the bar from this

situation, it will succeed and learn at least one path to the goal. However, until it

happens to be in that situation, it has no knowledge whatsoever about how to achieve

the goal. There is no way for it to know whether it is getting close or not. Since

the complexity of exploration can often be exponential in the size of the domain, this

problem can make autonomous learning extremely di�cult in many domains.

54 CHAPTER 3. LEARNING IN AUTONOMOUS AGENTS

There have been a few attempts to solve the exploration problem without outside

assistance, generally through some form of directed experimentation. If the agent

can intelligently decide which actions to try, it can perhaps guide its search toward

unexplored regions of the state space and thus explore the environment more quickly.

Intelligent exploration has been studied somewhat in the reinforcement learning com-

munity (Moore & Atkinson 1993, Peng & Williams 1993) as well as in LIVE, but

there is still no way to avoid lengthy random exploration in domains in which goal

achievement requires a particular sequence of actions, such as the bar-grabbing action

sequence in Botworld.

One way of simplifying the exploration process is to provide partial rewards along

the path to the goal, acting to focus the agent's explorations in the direction of the

goal. Partial rewards would clearly be useful for an unsupervised learning method

such as Q-learning, but it is di�cult in general to come up with these partial rewards.

These rewards are also quite goal-dependent, so they must be computed separately

for each goal.

Another way of simplifying exploration is to provide the agent with a partial

model of the environment, which the agent can then modify. This makes learning

signi�cantly easier, and is often much less di�cult than the task of providing the

agent with a complete and accurate model. Within the context of action-model

learning, this approach was used in Gil's EXPO system (Gil 1992). EXPO assumes

that the user provides a set of approximately correct action models, which the system

uses to make tentative plans to achieve the given goals. If the tentative plan fails,

EXPO can update the operators appropriately. The partial action models in EXPO

can have missing preconditions or e�ects, but cannot have extraneous preconditions

or e�ects.

Finally, a trainer may be available to the agent while it is actually doing learning.

There are various ways in which a trainer might aid a learning agent, such as suggest-

ing actions to try or placing the agent close to the goal so that random exploration is

likely to succeed. One very convenient way of aiding an agent is simply to be available

to complete tasks on request. The learner can then observe the trainer and learn from

the successful task completion. The action-model learning system OBSERVER (Wang

3.3. ENVIRONMENTS 55

1995b) uses this method of trainer assistance, and we have chosen to use it in TRAIL

as well.1 Further details on TRAIL's use of the trainer are found in Chapter 4.

A signi�cant advantage of having the trainer complete tasks in this way is that the

trainer does not need to have any knowledge whatsoever about the agent's represen-

tation of the domain. All the trainer needs to be able to do is to complete the task.

This method also allows for a natural method of measuring learning performance -

the more frequently the learner can complete a task without consulting the trainer,

the better its learning is. We discuss this measure further in Section 6.4.

3.3 Environments

As we stated earlier, the assumptions that an agent makes about an environment

greatly a�ect the design of its learning algorithm. However, it is di�cult to categorize

environments in terms that will allow us to do an exact analysis of the expected

behavior of a learning agent. It is sometimes possible to analyze behavior precisely

given that the environment can be modeled as a simple mathematical structure such

as a �nite state automaton, but as we argued earlier, most real environments cannot

be categorized in such simple terms. Factors such as real-valued variables and the

unpredictable actions of other agents make modeling real environments very di�cult.

However, complicated real environments are clearly not all the same with respect

to the di�culty of learning, or of action-model learning in particular. Even if we

cannot fully classify the sorts of environments our agents might encounter, we can

still identify dimensions along which they vary, dimensions that might well a�ect

learning performance. What follows is not intended as a complete characterization of

environments, but rather as a suggestion as to what some of those useful dimensions

of variability might be. A similar classi�cation can be found in Chapter 2 of Russell

& Norvig (1995).

1Behavioral cloning also uses this model of training, but TRAIL's learning focuses on the e�ects
of the teacher's actions rather than on the actions themselves.

56 CHAPTER 3. LEARNING IN AUTONOMOUS AGENTS

3.3.1 Continuous and Discrete Features

If an agent is to interact with its environment, it must have some way of sensing

that environment.2 For our purposes, the way in which this sensing is done is a

�xed property of the agent, and can therefore be considered as an attribute of the

environment.

The sensors of an agent might include both discrete features (boolean predicates

and ordinally-valued variables) and continuous features (real-valued variables). If the

agent senses only discrete features, we say that the environment is discrete (regardless

of whether the underlying environment is in fact discrete or continuous.) Otherwise

we say that the environment is continuous.

Many environments can be usefully described using only discrete features. For

instance, if low-level navigation routines are built into a robot, an o�ce delivery

domain is essentially discrete - the robot is in one of a �nite set of rooms, objects are

possessed by one of a �nite set of people, etc. Even the Botworld domain described

in Section 1.2.1 is discrete if the bot is given the set of prede�ned predicates - while

the simulation itself takes place in a continuous world, the bot only senses a �nite

number of predicates, i.e. for each bar, is it facing the bar, is it at the proper grabbing

distance, and so on. This set of predicates is the bot's only way of sensing the world,

so the world appears discrete to the bot.

On the other hand, there are environments that for practical purposes cannot be

described using discrete features. One good example of this is the
ight simulator

domain. Most of the features in this domain are continuous, such as altitude and

speed. Of course, continuous features can be discretized, but it is di�cult to decide

in advance on a discretization that keeps all the relevant information in a feature.

This distinction can be critical for learning. Behavioral cloning can often be done

whether features are continuous or discrete, as most concept learning algorithms

can deal with real-valued attributes. However, algorithms that build models of the

environment normally assume that the world can be modeled as a structure with

2Of course, this does not necessarily mean it can sense the complete world state; see the next
section.

3.3. ENVIRONMENTS 57

discrete states. Most of these algorithms cannot deal with real-valued variables.

Finally, much of the existing action-model learning work assumes that the world

can be described by discrete predicates, and thus does not reason about continuous

features. LIVE's Towers of Hanoi domain is purely discrete, and although EXPO and

OBSERVER's part machining domain contains numeric constants, the system's learner

does not do any reasoning about their possible range of values.

3.3.2 Propositional and Structured State Descriptions

The sensors through which an agent perceives an environment can often provide use-

ful structure to a learning system. The sensors provide a description of each state

of the environment, which may later be used as a learning instance. In the simplest

case, these descriptions are purely propositional, consisting of a set of boolean predi-

cates such as HandFree and BlockAonTable. More usefully, the descriptions can be

represented using an attribute-value format, consisting of a number of attributes and

their values in the state. Each attribute is either real-valued, such as BatteryLevel,

or discrete, such as RoomWhereRobotIs. This representation allows for the expres-

sion of real-valued quantities, and also avoids the need to have a large number of

propositions such as RobotInRoom101, RobotInRoom102, etc.

Finally, the most complex form of representation that we will examine is ground

�rst-order logic. Each state description consists of a set of ground literals, which may

describe the properties and relations among a number of objects in the environment.

We call such state descriptions structured, since each description contains internal

structure, in the form of relationships between the objects used in the descriptions. It

is important to note that structured representations are not any more expressive than

attribute-value representations (any ground situation description can be converted to

a set of propositions and continuous attributes) but that a �rst-order description may

be much easier to learn from. In fact, many concepts that are simple to express in

�rst-order logic, such as relationships between objects, may be very di�cult to express

if the situation description is strictly propositional. Therefore, a realistic mechanism

for learning from environments will have to be able to deal with structured situation

descriptions.

58 CHAPTER 3. LEARNING IN AUTONOMOUS AGENTS

3.3.3 Determinism

Most environments are not completely predictable. In any real environment, an action

taken multiple times in apparently identical states may have di�erent e�ects each

time. There are at least three possible reasons for such nondeterminism. First, other

agents may be taking actions which a�ect the agent and its environment. Second,

states which appear identical to the agent may not actually be identical, a condition

known as perceptual aliasing (Whitehead & Ballard 1990). Perceptual aliasing can

result either from noise in the agent's sensors or from sensors that are unable to sense

some relevant features of the environment, such as whether a door is locked. Finally,

the e�ects of the action may simply be random. Truly random e�ects could actually

be considered as a special case of perceptual aliasing, but the term is usually used to

refer to circumstances where there is a well-de�ned di�erence between the states that

is simply not perceptible to the agent. On the other hand, the occasional failure of a

robotic grasper, for instance, may not be due to any detectable cause.

It is extremely important for a learner to know whether randomness occurs in

its environment. Methods that are based on an assumption of determinism usually

fail totally when presented with apparently inconsistent behavior. LIVE, EXPO, and

OBSERVER all assume that their environments are deterministic. TRAIL does not; its

methods for dealing with nondeterminism are discussed in the next two chapters.

There are at least three possible ways of dealing with nondeterminism in a learn-

ing agent. First, the agent may model action e�ects as a random process, as would be

done in a hidden Markov model learner. Second, it may attempt to discover hidden

variables which explain the apparently random e�ects, such as a DoorLocked predi-

cate. We discuss such automated feature construction in the future work discussion

in Section 7.2. Finally, it may simply acknowledge that the models it is learning are

not guaranteed to be correct, but are correct under most circumstances. Due to the

robustness inherent in the TR execution mechanism, TRAIL can learn and use models

that will work under most circumstances but may sometimes fail.

3.3. ENVIRONMENTS 59

3.3.4 Durative and Atomic Actions

Another dimension along which environments can vary is the types of actions that the

agent can take. An atomic action is one in which the agent does not sense the state

of the world while the action is taking place, and thus cannot respond to anything

that happens in the meantime. Thus, even if the action itself takes time (consider

the act of picking up a block in Blocksworld) it is in e�ect instantaneous as far as

the agent is concerned. On the other hand, actions such as a robot moving through a

room are better described as durative actions in that they continue over some period

of time during which the robot is sensing, and perhaps taking other actions as well.

Any such durative action could also be represented as a series of small atomic ones

(in this case, perhaps an accelerate action followed by a number of wait actions)

but this is not a very intuitive or convenient representation.

Nearly all of the existing environmental learning work has focused exclusively on

atomic actions, since they can be easily reasoned about using straightforward state-

action-next state representations such as �nite state automata and STRIPS operators.

(Two notable exceptions are the work on map learning and DeJong's work on learning

to plan in continuous domains (DeJong 1994), which will be discussed further later.)

However, we believe that durative actions are a fundamental component of many en-

vironments and that they must be considered when designing an autonomous agent's

learning algorithm.

3.3.5 Hostile Environments

Finally, in any environment in which other agents can act, there is a danger that the

behavior of the other agents will be hostile, that is, intentionally or unintentionally

blocking our agent's attempts to achieve its goals. This case clearly di�ers from

cases in which the goal is simply unreachable from the current state; in the case

of hostile agents, the agent theoretically should be able to achieve its goals, but is

repeatedly prevented from doing so. It also di�ers from the case where action failures

occur randomly; if the failures are truly independent events, repeated attempts will

eventually achieve the goal. The e�ects of other agents may well be non-random, thus

60 CHAPTER 3. LEARNING IN AUTONOMOUS AGENTS

leaving the agent with no guarantee of eventual success.

Of course, we do not have any way of avoiding this problem for our agents. We

are merely noting that the possibility of hostile agents is another reason it may be

di�cult to build a useful model of a real environment, or to prove useful theoretical

results about agent performance. Teleo-reactive trees are built to handle occasional

action failures or outside interference, but of course will fail if some outside agent is

repeatedly causing action failures. For more on this issue, see the discussion of TR

trees in Section 2.1.

3.4 TRAIL's Environmental Assumptions

As we have been discussing, TRAIL has made a certain set of assumptions about the

environment in which it will function. These assumptions do not guarantee that

TRAIL will successfully perform in any particular domain, but they are necessary

conditions in order for TRAIL to be able to operate. In brief, TRAILmakes the following

assumptions about the environments in which it is learning:

� A teacher is available who can guide the agent to complete any goal that TRAIL

does not know how to achieve. The teacher does not need to give any explana-

tions of its behavior or have any knowledge of TRAIL's domain representations.

� The environment can contain both continuous and discrete features. Learning

will be faster, however, if the environment is purely discrete, since the learner

will not have to induce intervals over continuous attributes.

� The state descriptions are in ground �rst-order logic. The learner can thus use

Inductive Logic Programming to learn �rst-order concept descriptions that are

more expressive than the attribute-value concepts used by most learners, as will

be discussed in more detail in Chapter 5.

� The state descriptions are complete. This assumption allows the learner to

include negative literals in learned concepts, by assuming that literals that are

not included in the state description do not hold. Note that this assumption

3.4. TRAIL'S ENVIRONMENTAL ASSUMPTIONS 61

does not require the agent to sense the complete world state at each time step;

a stored world model can be used to generate some of the literals in the state

description.

� Actions can be durative or discrete, and action names can contain variables,

as in pickup(?x). (Operators, of course, can contain variables as well.) We

do assume that TRAIL is given the set of low-level actions that it can perform,

although it does not initially have any information as to their e�ects.

� The preimages of the learned operators can be e�ectively approximated using

the given concept language and perceptual predicates. TRAILmay not be able to

learn a precise description of each operator preimage, due either to perceptual

aliasing or to limitations in the concept description language, but it should be

able to approximate each preimage such that:

1. The learned preimage is su�ciently general to be useful for planning.

2. The learned preimage does not contain states such that once the agent is

in the state, it is repeatedly unable to achieve the goal due to some hidden

condition. (This di�culty could be resolved using feature creation, which

is not currently implemented in TRAIL.)

� The behavior of the environment may change over time, but is not changing

so fast that TRAIL's learning mechanism is unable to modify its set of TOPs

rapidly enough to keep up with the world.

� Other agents may take actions that interfere with TRAIL's goals, but this inter-

ference should not be intentionally or unintentionally hostile. In other words,

the interference must not be such that TRAIL is repeatedly frustrated in its

attempts to achieve goals.

� The world is benign, in that the agent will not encounter any situations during

learning from which it cannot recover. Most learning systems implicitly make

this assumption, as it is impossible to avoid unrecoverable situations without

62 CHAPTER 3. LEARNING IN AUTONOMOUS AGENTS

very speci�c domain knowledge. Incidentally, most simulations are trivially

benign, as the agent can simply restart the simulation.

In the next chapter, we contrast the action-model learning methods used in TRAIL

with the methods used in more traditional, STRIPS-like environments. We use the

term \STRIPS-like" to describe domains in which many of the traditional assumptions

of a generic STRIPS-style planner hold. Many of the above assumptions, such as the

assumption of a benign world, are also made in such environments, but there are three

particular assumptions which are critical in a STRIPS-like environment, as follows:

� State descriptions are in ground �rst-order logic. They may contain continuous

features, but actions can only set these features to speci�c values, and action

preconditions can only require the feature to have a speci�c value, not a range

of numeric values.

� Actions are atomic, taking a �xed amount of time. Changes that occur during

an action can e�ectively be treated as occurring instantaneously.

� Action e�ects are deterministic. This implies that no other agents can take

actions that a�ect the environment, and that therefore the e�ects of an action

are exactly the di�erence between the state before it was taken and the state

immediately following it.

3.5 An Overview of TRAIL

In summary, TRAIL is based on the idea that the most practical method of learning to

achieve a variety of goals in continuous and dynamic environments is through learning

models of actions. As we argued earlier, learning complete models of the environment

in realistic environments is too computationally di�cult, while learning only a behav-

ioral policy is insu�ciently general. Therefore, as it acts in an environment, TRAIL

builds models of the actions it takes and the e�ects they have, using methods that

are discussed in the following two chapters.

3.5. AN OVERVIEW OF TRAIL 63

The TRAIL agent architecture is shown in Figure 3.1, and is discussed in further

detail in Benson and Nilsson (1995) and in Chapter 6 of this thesis. All of TRAIL's

behavior follows from goals that are given to the system by a human user.

In the absence of learning, the TRAIL architecture functions essentially as a stan-

dard plan-execute architecture with the addition of the teleo-reactive execution mech-

anism presented in Section 2.1. Once a goal is given to TRAIL, it obtains a plan to

achieve the goal, either by planning from scratch (as described in Section 2.4) or by

retrieving a TR tree from the Plan Library (Section 2.4.2.) This plan is then in-

serted into the TR memory. The agent also has inputs that allow the computation

of conditions needed by the active TR tree. The immediate sensory data required

for these computations are provided more-or-less continuously by a separate percep-

tual module|not shown in Figure 3.1|and are stored in the World Model along with

other information about the environment that cannot be immediately sensed but that

can be remembered. (The perceptual module is an independent component of the

architecture and will not be further discussed here.) Finally, the executor determines

which node in the TR tree is currently the highest true node and activates the appro-

priate action. If there is more than one active tree in the memory, goal arbitration

can be done using an algorithm described in Benson and Nilsson (1995).

The adaptive behavior of TRAIL arises from the interaction of the planner, the

reactive executor, and the action-model learner. These three components can be con-

sidered as a cycle that interrelates the processes of planning, execution, and learning.

As described above, TRAIL's planner receives goals in the form of conditions to

be made true in the environment and produces plans in the form of TR trees that it

expects will achieve these goals. Since the planner relies on a set of action models

that has been produced by the learner, any inaccuracies in the learned action models

may lead to incorrect trees being produced. The execution of these trees may lead

either to the achievement of the agent's current goal, or to a call to the learner or

teacher if any of a variety of failures occurs. Plan failures are discussed more fully in

Section 4.4.

Finally, the learner receives records of action execution from the executor and

uses them to update its set of action models, correcting inaccuracies that caused plan

64 CHAPTER 3. LEARNING IN AUTONOMOUS AGENTS

TR Executor

Planner

Teacher

World

Model

Calls for

TR Trees

Sample Runs

Goals

Preds.Sensors

Effectors

Help

User LearnerTOPs

Execution Records

Figure 3.1: TRAIL's Agent Architecture

failures. The learning algorithm itself is based on a variant of the inductive logic

programming algorithm DINUS (D�zeroski et al. 1992) and is presented in Chapter 5.

The updated action models are then used by the planner to create new trees, allowing

the learning cycle to continue.

This cycle assumes that TRAIL has su�cient knowledge to create an approximately

correct plan for the goal it has been given. However, if TRAIL's action models are

insu�cient to construct a reasonable plan, it must resort to some method of environ-

mental exploration. As described above, the general problem of domain-independent

exploration is still too hard to be solved without extensive domain knowledge. There-

fore, TRAIL has access to an external teacher that it can call at any time to drive it

through completion of its current goal.

Thus, once a goal is given to TRAIL, it uses a combination of planning, learning,

and (when necessary) calls to the teacher to complete the goal. Each call to the

teacher and each incorrect plan that is generated provides an opportunity for TRAIL

to correct errors in its action models. Thus, over time, TRAIL manages to generate

correct plans increasingly often. We will return to the overall behavior of the TRAIL

system in Chapter 6.

Chapter 4

Instance Generation in TRAIL

In the last two chapters, we have presented our motivations for building an action-

model learner and described the background of the TRAIL system, including the TR-

tree control structure and the planning and learning architecture. In the next two

chapters, we take a closer look at TRAIL's learning component as an inductive concept

learner. This chapter describes the methods that TRAIL uses to generate examples,

or training instances, from which it can learn, while Chapter 5 describes how TRAIL

uses these learning instances to generate action models.

4.1 Inductive Concept Learning

The form of learning used in TRAIL is known as inductive concept learning, and is the

most widely studied area of machine learning. (Other areas include reinforcement

learning and learning to perform tasks more e�ciently.) In the inductive concept

learning framework, the learner is given a set of training instances, each of which

is labeled with some category. The task of the learner is to produce a classi�er

that, given a new instance, will with high probability generate a correct label for the

instance. This classi�er can be a decision tree, a neural network, a set of rules, or

any of a variety of other representations. Valiant's formal framework for inductive

concept learning (Valiant 1984) and a number of di�erent concept learning approaches

are covered in a survey paper by Dietterich (1990).

65

66 CHAPTER 4. INSTANCE GENERATION IN TRAIL

In most of the existing inductive concept learning work, it is assumed that the set

of training instances is given to the learner by some outside source. If the learner is

attempting to learn medical diagnosis, it will be given patient records labeled with

their diagnoses, while if the learner is doing behavioral cloning (see Section 3.1.1),

the trainer will provide instances of situations labeled with the action that the trainer

took in that situation. There is also a variety of work on query-based learning (An-

gluin 1988) in which it is assumed that the learner can query an oracle to obtain

labels for particular instances. However, in TRAIL, we cannot rely on the training

instances being in such a conveniently labeled format. Although it is di�cult and

computationally expensive for TRAIL to create directed \queries" in an environment

(since it may not initially know how to achieve particular world states), the external

teacher and TRAIL's own planner provide numerous examples of behavior. Unfortu-

nately, the examples provided by the teacher and the planner are not in the form of

action models. Thus, the problem we are focused on in this chapter is not the original

generation of these experiences but in the conversion of the experiences into a set of

labeled instances that can be used by a concept learner.

We can subdivide the process of learning action models into three separate phases.

First, some module, either a teacher or an experimentation system, takes actions in

the environment. Second, the learner observes these actions and categorizes them as

positive or negative training instances for speci�c action models. Finally, an inductive

concept learning algorithm takes these instances as input and outputs a description

of the action model.

The �rst phase, that of selecting actions to take in the environment, has been

studied in the context of several action-model learning systems, including LIVE (Shen

1994) and EXPO (Gil 1992). Both systems included directed experimentation mod-

ules that generate behavior useful for action-model learning. TRAIL, on the other

hand, generates behavior by calling the teacher, by executing TR trees created by

the planner, and by using certain limited experimentation strategies discussed later

in this chapter.

The second phase, that of observing the behavior and producing labeled training

4.2. EXPERIENCE RECORDS IN CONTINUOUS ENVIRONMENTS 67

instances for the learner, has been less thoroughly examined. The STRIPS environ-

mental assumptions discussed earlier have made this phase essentially trivial for most

other action-model learners, as we shall see in Section 4.3. However, for environments

that contain continuous attributes and durative actions, producing labeled training

instances is considerably more complicated. The remainder of this chapter discusses

the di�culties involved in instance generation within TRAIL, and presents TRAIL's

solutions to these problems.

The �nal phase of learning is the inductive concept learning itself. TRAIL performs

inductive concept learning using an approach known as Inductive Logic Programming,

which is intended to e�ciently produce classi�cation rules given instances that are

described in �rst-order logic. TRAIL's concept learning algorithm is discussed in detail

in Chapter 5.

4.2 Experience Records in Continuous Environ-

ments

If an agent is acting in an environment, whether it is under control of an external

teacher or its own internal exploration or experimentation module, it is producing

a series of experiences that a learner can observe. These experiences can be viewed

as tracing paths through state space (see Section 2.3.2). Each experience consists of

a sequence of states during which actions are executed. Durative actions may span

several states in the sequence.

We can describe these experiences as state-action sequences:

S1 a1 S2 a2 S3 : : : Sn�1 an�1 Sn

where each Si is a description of a state si of the environment and each ai is an action

taken by the agent. Such a sequence is called an experience record. (As stated in the

introduction, we use si to denote the state described by the state description Si.) The

state descriptions themselves, as usual, are conjunctions of ground predicate calculus

literals, taken from the set of predicates provided by the domain designer.

68 CHAPTER 4. INSTANCE GENERATION IN TRAIL

If the environment is a STRIPS-like environment, it is clear what these experience

records represent. Each ai is an atomic action that transforms the world state from

si to si+1. (Of course, si+1 may not actually di�er from si, as ai might not have

any e�ect in si.) Since the agent is the only entity capable of causing changes in the

world, all of the di�erences between si and si+1 are due to action ai, and the entire

e�ect of ai consists of these di�erences.

On the other hand, if the environment contains durative actions, or other agents

that might a�ect the world state, the semantics of such a representation are less clear.

Since the environment is continuously changing, we assume that the agent is sensing

the environment at some sampling rate. By convention, we assume that state-action

sequences in such environments represent a periodic sample of what the environment

state was and what action the agent was taking at the time. Therefore, each action

may span several states si : : : si+j and e�ects may occur at several points during an

action execution. Figure 4.1 represents several experience records in which action a

was used in attempting to achieve �. In brief, the states labeled with a \+" in the

�gure will generate positive instances of the TOP
a
!�, while the states labeled with

a \-" will generate negative instances.

a

a

a

Region where

λ holds

"state space"

Figure 4.1: Experience Records, as Viewed in State Space

Observe that this execution record format corresponds naturally to the way in

which an agent would execute a teleo-reactive tree: at some rate, the agent ob-

serves the environmental state (based on current sensor values and possibly also on

a stored model) and computes an action based on it. If the agent is recording these

4.2. EXPERIENCE RECORDS IN CONTINUOUS ENVIRONMENTS 69

(state; action) pairs as it is acting, then we are assured that the experience record

provides a relatively accurate representation of the agent's behavior. In particular,

if ai is a durative action, any changes that occured between states si and si+1 are

guaranteed to have occurred while the agent was executing ai. (Note that this does

not imply that ai caused these changes.) If ai is a near-instantaneous atomic action,

the changes may have occurred some time after ai was executed but before si+1. But

still, the agent was not executing any other action during that time, so the e�ects can

be at least tentatively attributed to ai.1

Throughout the remainder of this chapter, state-action sequences will be assumed

to have been generated either by observing a teacher or by executing a teleo-reactive

tree as described above. Since our agents may be executing with a high sampling

rate, they can produce quite long experience records. Methods for shortening these

records will be covered in Section 4.2.2.

4.2.1 Sources of Experience Records

If an experience record comes from an agent's observations of a trainer, then there is

no information that can be recorded other than the state-action pairs. (Again, this is

one of the main advantages of using a learning-from-training paradigm; the teacher

does not need to give the learner any additional domain information.) However, if

the experience record in question results from the execution of a teleo-reactive tree,

the agent has additional information that can aid the learning process. Each node Ni

in the TR tree (other than the root node) was generated by regressing the condition

of its parent node through some TOP �i. Every action taken during the execution

must result from some active node Nj in the TR tree, and thus must correspond to

the TOP �j that was used in generating node Nj. Therefore, TRAIL records along

with each action the TOP that was used to generate the node that was active at the

time.

This information can be useful in several ways during learning. If the TOP was

1Note that this assumption prevents us from learning delayed e�ects that occur after the termi-
nation of the action. This problem is discussed further in Section 7.2.

70 CHAPTER 4. INSTANCE GENERATION IN TRAIL

successful (i.e. the parent node became true as a result of the action taken) then

TRAIL can record a positive instance of that TOP directly, while if the TOP failed

in some way, negative instances for the TOP can be easily generated. Both of these

processes are covered in more detail in the remainder of this chapter.

4.2.2 Simplifying Experience Records

As observed above, if the agent is sensing the world at a high sampling rate, it will

produce a very long experience record. This will greatly increase the computation

time necessary to learn operators from the sequence. Therefore, we need some method

of simplifying the state-action sequences to produce more manageable representations.

The obvious method for experience record simpli�cation is to collapse sequences

of state descriptions that are e�ectively identical. For instance, if a subsequence of

the experience record is Si ai Si+1 ai+1 Si+2 where Si and Si+1 are identical and

ai and ai+1 are the same action, this subsequence can be condensed to Si ai Si+2

with no loss of information. If this simpli�cation is done, the state descriptions must

also be annotated with the actual number of intermediate states that occurred since

the previous state in the condensed record. This information will be needed later in

estimating the average time an action takes to achieve an e�ect.

We can condense the experience record still further if the learner is given some

domain information as to which state attributes are likely to be relevant to the actions

we are learning. A real environment may contain many irrelevant attributes, and

if these attributes are frequently changing, they can result in numerous irrelevant

changes in state between the relevant changes. If the learner knows that a set of

attributes is irrelevant, the state descriptions Si and Si+1 can be considered identical

and combined, as described in the previous paragraph, any time they di�er only on

the set of irrelevant attributes. Again, this process will considerably simplify the

experience records, but at the cost of potentially discarding important information if

the wrong attributes were selected as irrelevant. The detection of irrelevant attributes

is an important problem in machine learning, but one that has not yet been examined

in the context of action-model learning. We discuss this issue further in Section 7.2.

The above simpli�cation methods work well when applied to discrete domains, but

4.3. GENERATING POSITIVE INSTANCES 71

generally fail completely when applied to domains containing real-valued attributes.

Consider the
ight simulator domain. Once the plane has taken o�, its altitude will

be constantly changing. (This is pretty much true even if the plane is attempting

to engage in level
ight.) However, if we assume that the real-valued attributes are

continuous, which is not an unreasonable assumption in most domains, then most

of the intermediate states encountered during an experience are not relevant. If

the altitude of the plane changed from 100 feet to 200 feet over some interval of

time, we can assume that it actually took on all the intermediate values; it is not

important for the learner to know which intermediate values actually occurred at the

particular sampling times used during the interval. The algorithm used for simplifying

experience records containing real attributes is closely related to the issue of positive

instance generation in such domains, and will be described in the next section.

4.3 Generating Positive Instances

Once the agent has obtained a series of experience records, either by observing a

teacher or from its own exploration and experimentation module, it needs to trans-

form these state-action sequences into TOP instances for a concept learner. In a

STRIPS-like environment, this instance generation process is relatively simple. For

each Si ai Si+1 triple, the learner looks at its existing database of operators to �nd

the one corresponding to ai, or if it allows conditional operators, the one correspond-

ing to the execution of ai in si. If an operator is found, the learner will make a

prediction about the state after the operator is executed, which can be compared to

the actual post-state description Si+1. If the predicated and actual states match, the

learner has observed a positive instance of that operator, otherwise it has observed

a negative instance. (If no operator is found, one can be generated in the obvious

manner.)

In environments that cannot easily be described using the STRIPS operator for-

malism, the instance generation task is more complex. The remainder of this section

examines the generation of positive instances of TOP preimages from experience

records in such non STRIPS-like environments.

72 CHAPTER 4. INSTANCE GENERATION IN TRAIL

4.3.1 Recording Positive Instances from Experience Records

We begin with the assumption that e�ects that occurred during the execution of

an action are actually reliable e�ects of that action. This may not be an accurate

assumption, as they may have been caused by other agents in the environment or

simply by random chance. Such incorrect attributions can initially lead the agent to

develop \optimistic superstitions" such as \going to Room131 will cause Door1 to

be open when I return." These superstitions will initially produce operators that do

not work in the real world. However, TRAIL is robust in the face of such operators:

if TRAIL uses such an optimistic operator in a plan, the plan will fail and TRAIL will

realize that the operator is in fact incorrect. (Details of this process are covered in

Section 4.4.) This process is an inevitable part of learning in noisy environments, as

the agent cannot usually determine from a single observation whether an e�ect was

actually caused by the agent's actions. The only way to determine whether an e�ect

is reliable is through repeated observations, and the use of the operator in later plans

will produce such repeated observations.

Thus, given any state-action-state triple Si a Si+1, any di�erence � between Si

and Si+1 is considered as an e�ect of the action a. We call this observation a positive

occurrence of the TOP
a
!�. Now, we note that si is a state such that application of

action a led to the e�ect �. Therefore, if we assume that the observation is reliable,

si is in the preimage region of the TOP. Now suppose that a was also executed for

some time prior to state si:

Si�k a : : : Si�1 a Si a Si+1

If � does not hold in si�k, then we can also say that si�k is a state such that application

of a caused � to become true. Therefore, si�k is also in the preimage region of the

TOP
a
!�. By an identical argument, the descriptions of all states in the set si�k : : : si

in which � does not hold are recorded as positive instances of the preimage condition

for the TOP.2 Note that the positive occurrence of the TOP is the entire section of

the execution record during which a was executed, ending at state si+1, while the

positive instances are the individual state descriptions Si�k : : : Si, which will later be

2If the TOP
a
!� did not already exist, a new TOP is created with action a and e�ect �.

4.3. GENERATING POSITIVE INSTANCES 73

State State Description Action
s0 FacingBar(Bar2)^BotHolding(Bot3; Bar4) : : : forward

s1 FacingBar(Bar2)^BotHolding(Bot3; Bar4) : : : turn

s2 BotHolding(Bot3; Bar4) : : : turn

s3 BotHolding(Bot3; Bar4) : : : turn

s4 FacingDoorway(Door1) ^BotHolding(Bot3; Bar4) : : : turn

s5 FacingDoorway(Door1) : : : turn

s6 FacingDoorway(Door1) ^ FacingBar(Bar1) : : : forward

Table 4.1: A State-Action Sequence

used in learning.

As an example, consider the (simpli�ed) state-action sequence shown in Table 4.1.

The intended e�ect of the turn action in the sequence appears to be the condition

FacingBar(Bar1). Thus, the sequence of states s1 : : : s6 is a positive occurrence

of the TOP
turn
! FacingBar(?x), and the state descriptions S1 : : : S5 are positive in-

stances for the preimage. Meanwhile, there are also a number of other e�ects that

occur during the turn action. For instance, the predicate FacingDoorway(Door1)

becomes true while the bot is turning, which may produce another valid TOP. On

the other hand, the predicateBotHolding(Bot3; Bar4) becomes false during the turn.

Therefore, TRAIL identi�es the state descriptions S1 : : : S4 as positive instances of the

TOP
turn
! :BotHolding(?x; ?y). These positive instances may cause TRAIL to develop

a \superstition" about the possible e�ects of the turn action, but such a superstition

will eventually be unlearned when TRAIL attempts to use the TOP (unsuccessfully)

in some future plan.

When we observe a positive occurrence of a TOP, we also record the time that

the action takes to achieve the postcondition. This is the elapsed time between the

earliest state in which a was being executed and � did not hold and the state si+1 in

which � became true. As TRAIL observes multiple positive occurrences, it maintains

a record of the mean and variance of these execution times. TRAIL will later need to

know the average execution time for a TOP, in order to detect certain types of TOP

failures, as discussed in Section 4.4.1.

The above process considers all e�ects that occur during the execution of a as

candidates for positive instances of some action model. One might also consider only

74 CHAPTER 4. INSTANCE GENERATION IN TRAIL

those e�ects of a that occurred during the last time step in which a was executed,

since these are presumably the \most important" e�ects of a. After all, the agent

stopped taking the action after these e�ects occurred. However, intermediate e�ects

often occur during execution that may be useful in future plans. For instance, if a

robot is turning to face a doorway, it might turn past an electrical outlet along the

way. Thus, the predicate FacingOutlet would be false in s0, would become true in

some intermediate state si, and would be false again in sn. If the learning mechanism

within the robot were to examine the intermediate states, it might notice the power

outlet and be able to �nd it more quickly next time it is in the room.

In the current implementation of TRAIL, there is one case in which it does not

consider all of the e�ects of an action a. If TRAIL has planned a TR tree for some

goal, and this tree is successfully executed without any unexpected transitions in the

tree, then it will often be the case that no relevant surprises occurred during execution.

Therefore, in the interest of e�ciency, TRAIL only generates positive occurrences of the

TOPs that were actually used in planning the tree nodes that were executed. Since

these TOPs are recorded along with the actions in the experience record, TRAIL can

reinforce the correct TOPs without searching all pairs of states encountered during

the execution of a, as would be done by the positive instance generation process

described above. We believe that this heuristic speeds up the learning process, but

at present, the overall e�ect of the heuristic is still a subject for further investigation.

4.3.2 Positive Instances in Real-Valued Domains

As was observed in Section 4.2.2, the de�nition of a state di�erence may need to be

re�ned if the agent is in an environment containing real-valued attributes. Suppose

the agent is executing some action a in the
ight simulator that causes the altitude

to increase by one foot each time step for some interval of n time steps. Then

each new value of the altitude will lead to a separate positive occurrence of the

TOP
a
!Altitude(?x). Since all previous states in the execution of a will be positive

instances of this TOP, there will be a total of n(n�1)=2 positive instances generated.

This will generally be far more instances than we actually need for learning.

Therefore, if the e�ect of a TOP is to change the value of a real-valued attribute

4.3. GENERATING POSITIVE INSTANCES 75

(i.e. a real-valued argument of some domain literal), TRAIL only creates a positive

occurrence of the TOP when either (i) the agent stops taking the action or (ii) the

sign of the derivative of the attribute in question changes. Thus, if an action a causes

the plane's altitude to change smoothly from 100 feet to 150 feet to 120 feet, TRAIL

will produce two positive occurrences of the TOP
a
!Altitude(?x), one expressing the

change in ?x from 100 feet to 150 feet and one expressing the change from 150 feet to

120 feet. This simpli�cation considerably reduces the number of instances generated,

without losing signi�cant information.

In cases where the positive occurrences themselves occur over long periods of

time, the number of instances can be reduced still further by taking only a sampling

of the intermediate states of a positive occurrence. In the case where the di�erences

between these intermediate states are only small changes in numerical attributes, state

sampling will also not result in the loss of signi�cant information. TRAIL makes use

of this sampling strategy to reduce the number of instances generated when learning

in the
ight simulator domain.

Finally, we may also wish to have some mechanism to di�erentiate between signif-

icant and insigni�cant changes in a real-valued attribute. If a boolean condition such

as Holding(Bar1) changes from true to false as a result of an action, this is likely

to be a signi�cant change. However, if the altitude of the plane changes from 200

feet to 202 feet during an action a, this is most likely an insigni�cant, coincidental

change. In particular, we probably do not want the agent to plan to use action a in

some future situation in which the plane needs to climb!

Therefore, we have allowed the domain designer to specify optional \tolerance

values" for each real-valued attribute V . These tolerance values have two e�ects on

the generation of positive instances for any TOP that has the e�ect of changing V :

� If the value of V changes by less than the tolerance value, no positive occurrence

of the TOP is generated.

� If the value of V is increasing over an interval, and during some subinterval it

decreases by an amount less than the tolerance, this decrease is ignored (and

vice versa if the value of V is decreasing over the interval.) For instance, suppose

76 CHAPTER 4. INSTANCE GENERATION IN TRAIL

the altitude of the plane increases from 100 feet to 150 feet, then down to 143

feet, then up to 200 feet. Unless the tolerance value of the altitude attribute is

less than 7 feet, only one positive occurrence of the TOP
a
!Altitude(?x) will

be generated, with ?x bound to the value 200 feet.

Both of these heuristics serve to eliminate many of the extraneous positive instances

that can be generated during learning.

4.4 Generating Negative Instances

Just as positive instances of TOP preimages are generated from observations of action

successes, negative instances of TOP preimages are generated from observations of

cases where the action did not have some anticipated e�ect. There are two ways in

which a learner can observe such failures. First, it may observe the execution of a

teleo-reactive tree that was planned using a set of TOPs. If any node in the tree

does not achieve its intended purpose, the TOP used in the generation of that node

has failed. (Recall that each node in the tree was generated by the regression of its

parent condition through some TOP.) Second, the learner may observe the actions of

a teacher and attempt to predict the e�ects of the teacher's actions, according to its

set of TOPs. If some action does not have its expected e�ect, then the TOP used to

predict the e�ect may be incorrect. Most of this section considers the �rst case; the

second case will be covered in Section 4.4.5.

4.4.1 Failure in Teleo-Reactive Trees

Given a plan, in the form of a TR tree, consider the problem of detecting failures in the

execution of the plan. In the case of STRIPS operators, after each operator is executed,

we can simply observe whether the expected result has occurred. However, execution

of a plan node that uses a durative action is more complicated. The procedure for

executing a node in a TR tree can be stated as \Continue executing the action a until

some goal is achieved, unless the activating condition becomes false �rst." Given this

de�nition, there are two distinct ways in which the execution of a node can fail.

4.4. GENERATING NEGATIVE INSTANCES 77

First, the activating condition may become false before the goal condition becomes

true. We refer to this case as an activation failure. Second, the activation condition

may remain true inde�nitely while the goal condition never becomes true. This case

is referred to as a timeout failure as it is detected when the action is executed for

signi�cantly longer than the average execution time of the TOP without success.

More formally, consider the general form of a TR node pair, as shown in Figure 4.2.

Let G be the condition that the action a is intended to achieve and P be the current

estimated preimage condition for the TOP
a
!G. There may also be other conditions

that the planner expects to be true throughout execution (which were achieved earlier

in the plan and will be necessary later.) Call this set of conditionsM (formaintenance

conditions.) Now the goal of the action is preciselyG^M , as the purpose of the action

a is to achieve G while maintaining M . Similarly, the activating condition for the

node is P ^M . IfM becomes false during execution of a, the planner's independence

assumption has failed, while if P becomes false before G becomes true, the agent is

no longer in the preimage region of the TOP and so should not expect to be able to

successfully achieve the TOP goal condition G.

a

P ^ M

G ^ M

Figure 4.2: The General Case of a TR Node Pair

For any world state s and condition �, de�ne s j= � to hold i� � is satis�ed in s.3

Now, for any execution of a durative plan node, let se be the state in which execution

began. Due to the properties of the TR execution mechanism, we are guaranteed

3We borrow the j= symbol for this nonstandard usage.

78 CHAPTER 4. INSTANCE GENERATION IN TRAIL

e�ect # actual condition cause

sf 6j= P 1 se j= �, sf 6j= � random execution failure

(activation 2 sf j= � estimated preimage too speci�c

failure) 3 se 6j= �, sf 6j= � estimated preimage too general

sf 6j=M 4 se j= � ^M , sf 6j= � random execution failure

(activation 5 se j= � ^M , sf j= � ^ :M :M a side e�ect

failure) 6 se j=M ^ :� estimated preimage too general

sf j= P ^M 7 se 6j= � estimated preimage too general

(timeout) 8 se j= �, sf 6j= � random execution failure

9 se j= �, sf j= � timeout detected too soon

Table 4.2: Possible Explanations For a TR Node Failure

that se j= P ^M . Finally, let sf be a state in which a failure was detected. As stated

above, this failure detection could occur either because the activation condition P ^M

became false in sf , or because the executor decided that the node had been active

for too long without success.

Given each case of plan node failure, we can analyze the possible causes of the

failure, as summarized in Table 4.2. Using the notation de�ned above, an activation

failure corresponds to the situation where sf 6j= P ^M and sf 6j= G ^M , while a

timeout failure occurs when the plan node would still be active (sf j= P ^M) but

the executor has been executing a for too long without success.

For the remainder of this chapter, we will let � denote the true preimage of the

TOP
a
!G. � may or may not be equal to P . Recall that the preimage region for the

TOP is the set of states for which the preimage condition � holds.

4.4.2 Analyzing Activation Failures

We �rst consider the case of an activation failure (the �rst six lines of Table 4.2).

Since sf 6j= P ^M , there are two general cases: either sf 6j= P or sf 6j=M (or both).

If sf 6j= P , one of the following three speci�c cases must hold:

4.4. GENERATING NEGATIVE INSTANCES 79

1. se j= �, sf 6j= �. Since se j= �, the TOP should have worked, but a random

execution failure apparently prevented the action from succeeding.

2. sf j= �. The agent has reached a state that is not in the estimated preimage

region of the TOP but is in the true preimage region. Thus, the current TOP

preimage estimate P is over-specialized and needs to be generalized to include

sf .

3. se 6j= �, sf 6j= �. Here the agent began in a state that was not in the true

preimage region. Since by de�nition se j= P , the current TOP preimage is

over-generalized and needs to be specialized to exclude se.

On the other hand, if sf 6j=M , one of the following holds:

4. se j= � ^M , sf 6j= �. Since se j= �, the TOP should have worked, but again a

random execution failure apparently took the agent outside the true preimage

region. M may or may not be a legitimate delete list element of the TOP.

5. se j= � ^M , sf j= � ^ :M . The agent is still in a state from which G can

be achieved, but the maintenance condition M has become false. Thus M is a

legitimate delete list element of the TOP.

6. se j=M ^:�. In this case the agent began in a state outside the true preimage

region, so the estimated preimage P is over-generalized. As in case 4, we cannot

accurately determine the true e�ect of the action on M .

Once an activation failure has occurred, it can be split into one of the above two

groups based on the conditions that hold in sf . However, the appropriate correction

to the TOP depends on which speci�c case applies. In case 2 of the above list, the

preimage needs to be generalized, while in case 3 it needs to be specialized. Similarly,

case 6 requires the preimage to be specialized, while case 5 requires a side e�ect to

be added to the TOP. In the noise cases, 1 and 4, the preimage ideally should not be

changed at all.

Thus, an activation failure in a TR tree suggests that the agent experiment in order

to attempt to discover the cause of the failure. A simple form of experimentation can

80 CHAPTER 4. INSTANCE GENERATION IN TRAIL

be used to decide whether the true preimage condition � holds in the �nal state

sf . All the agent needs to do is continue executing a from sf to see if G eventually

becomes true. If it in fact does, then the agent knows that it is in either case 2 or

case 5, depending on whether P or M holds.4

In the case where � does not hold in sf , it is more di�cult to determine whether

this is the result of � not holding in the starting state se or the result of a noisy

execution failure. The obvious solution is to repeatedly execute the TOP in se to

determine whether the failure is reliable. However, even aside from the obvious com-

putational expense of such experimentation, perceptual aliasing in the domain may

cause some di�culty: simply duplicating the situation may duplicate some hidden

condition that caused the failure but that is not common to all states equivalent to

se. Thus, in order to accurately determine whether se belongs in the preimage re-

gion of the TOP, the TOP must be executed in a series of representative situations

equivalent to se. We have not yet developed a satisfactory general mechanism for

doing this experimentation. Therefore, TRAIL simply considers all cases in which �

does not hold in sf as evidence that the TOP needs to be specialized. Thus, all such

cases will result in additional negative instances for the concept learner, which is not

unreasonable as it re
ects the fact that the TOP is not completely reliable.

There is one case of activation failure that deserves special mention here. That

is the case where the agent gets itself into a state from which it is clear the goal

cannot be achieved, for instance if the simulated plane being controlled by the learner

crashes into the ground. Inspired by the airplane example, we call such states crash

states. Assuming that there is some way in which the agent can recover from such a

situation, it is useful to record the states that led up to the crash state. First, these

states are very high-con�dence negative instances, compared to others that might

be incorrectly labeled as a result of incorrect preimages or insu�ciently long timeout

periods. Second, if possible we would like the learner to put extra weight on excluding

these states from the preimage, since we wish our agents to avoid such states even if

4Since experimentation is computationally expensive, TRAIL actually experiments only when a
node fails multiple times without leading to a successful revision of the plan. The exact criteria for
experimentation depend on the estimated reliability of the TOP in question.

4.4. GENERATING NEGATIVE INSTANCES 81

they only lead to crash states with low probability.

4.4.3 Analyzing Timeout Failures

Next, we examine the other failure case, that of a timeout failure. Timeout failures

are normally detected by comparing the current execution time of an operator to

the average execution time for that operator. If the time used is more than three

deviations above the average, TRAIL detects a timeout condition.

Given a timeout failure, there are three possible causes:

7. se 6j= �. Thus, execution may well continue inde�nitely without success if a

timeout is not imposed.

8. se j= �, sf 6j= �. This is a random execution failure similar to cases 1 and 4

above.

9. se j= �, sf j= �. In this case, execution is proceeding correctly, but failure has

occurred because the timeout period is insu�ciently long.

Unfortunately, the only way to distinguish case 9 from the other cases is to continue

execution, which is equivalent to simply lengthening the timeout period. Since the

agent cannot continue lengthening the timeout period arbitrarily, it must for the

moment simply assume that the timeout period is su�ciently long and accept such

cases as sources of noise. However, we have provided a mechanism for TRAIL to recover

from false negative instances caused by overly short timeout periods. Suppose that

TRAIL has observed a timeout failure of length t for a TOP � . If it later observes a

su�cient number of longer executions of � such that the mean execution time for �

increases above t, it will assume that the earlier failure was actually an instance of

failure case 9, and should be removed from the list of negative instances for � .

The other two timeout failure cases, cases 7 and 8, could be distinguished by

repeated experimentation of the same sort described earlier, but as in the earlier

cases, the possibility of perceptual aliasing would require the system to execute the

TOP in a variety of situations representative of se. Therefore, TRAIL does not do

82 CHAPTER 4. INSTANCE GENERATION IN TRAIL

experimentation in the case of a timeout failure, but rather automatically considers

all timeout failures as sources of negative training instances.

4.4.4 Generating Negative Instances from Plan Failures

Once a TOP failure is detected, it must be converted into a set of negative instances

for the learner. In the case of a timeout failure, this process is very similar to the

positive instance generation process described earlier. The action is described in

an experience record consisting of a state-action sequence Se a : : :a Sf . Since this

sequence represents a failure of the TOP, each state description in the sequence is

recorded as a negative instance of the TOP preimage.

If the failure was an activation failure, the learner is faced with a more complex

task. As described earlier, when an activation failure is detected, the agent will

sometimes experiment by continuing to execute the action. If the goal node of the

TOP eventually becomes true, the agent can simply identify a positive occurrence of

the TOP as described in Section 4.3, recording delete list elements where appropriate.

If the goal node of the TOP does not become true, then the agent must consider

whether the preimage condition P and the maintenance condition M hold. If the

preimage condition P is false, the TOP has failed and the states in the experience

record can be recorded as negative instances. If the maintenance condition M is

false, then some literal in M has become false and should be recorded as a delete list

element of the TOP. Thus, delete list elements can be identi�ed even if the TOP has

not succeeded.

A simple example in Botworld should make clear the need for identifying delete list

elements even in the case of TOP failures. Suppose that TRAIL is trying to achieve the

condition AtGrabbingDist(Bar1)^OnMidline(Bar1) and constructs the plan shown

in Figure 4.3. When this plan is executed, TRAIL will achieveAtGrabbingDist(Bar1),

turn until it is ParallelT o(Bar1), and then begin moving forward in hopes of achiev-

ing OnMidline(Bar1). Of course, this will fail immediately. Therefore, TRAIL needs

to learn from this failure that AtGrabbingDist(?x) is a delete list element for the

TOP
forward
�! OnMidline(?x).

In the interest of performance e�ciency, we place one limit on the identi�cation of

4.4. GENERATING NEGATIVE INSTANCES 83

FacingBar(Bar1)

AtGrabbingDist(Bar1)

ParallelTo(Bar1)
AtGrabbingDist(Bar1)

OnMidline(Bar1)
AtGrabbingDist(Bar1)

T

forward

turn

turn

forward

Figure 4.3: A Plan That Fails Due to a Side E�ect

activation failures. If a TOP is known to be unreliable, it is ine�cient to do relearning,

and possible experimentation, every time the TOP fails. Instead, we allow TRAIL to

continue executing the plan, while maintaining a count of the number of times each

node has failed. If a node fails repeatedly, we can then assume that the failures

are likely to be due to a planning error rather than an execution error, and thus

should be further examined. We can use the plan node success rate, as described in

Section 2.4.1, as an estimate of the reliability of the TOP, and thus call the learning

module only if we are sure to some con�dence level that the failures are not merely

execution errors.

4.4.5 Generating Negative Instances from a Teacher

Finally, let us return to the case where the agent is learning by observing some training

agent rather than acting on its own. Here, learning is constrained by the fact that

the agent has no access to the plan, if any, that is being executed. Also, since the

agent is only observing the training agent, it will not be able to perform experiments

immediately upon failure detection.

84 CHAPTER 4. INSTANCE GENERATION IN TRAIL

Given these limitations on the learner, we approach the negative instance gener-

ation problem by de�ning a negative occurrence of a TOP
a
!� as any state-action

sequence in which action a was executed and the expected e�ect � did not occur dur-

ing execution of a. Even without access to the plan being executed by the teacher,

TRAIL can observe such negative occurrences while the teacher is achieving some goal.

As described in Section 4.4.1, TOP failures can be divided into two categories,

activation failures and timeout failures. Given a state-action sequence, activation

failures can only be de�ned with respect to the estimated preimage of a particular

TOP
a
!�. If the estimated preimage of the TOP holds at some point during the

execution of a but does not hold at some later point, the TOP has failed. Timeout

failures for the TOP, however, can be de�ned more generally: any sequence in which

a is executed for a su�ciently long time without achieving � is a timeout failure.

However, we do place one limitation on the identi�cation of timeout failures.

Observe that for most operators, the preimage region only covers a very small portion

of the state space. Therefore, if the learner generates a negative occurrence of the

TOP
a
!� every time a is executed and � does not occur, it will quickly generate a

large number of negative instances. Instead, TRAIL will identify a timeout failure only

if it expected � to occur when it did not, i.e. some state in the execution record is

within the current estimated preimage region of the TOP.

Thus, when the training agent begins executing an action a, the learner examines

all TOPs that involve action a, and labels as active TOPs the subset for which the

preimage condition P is currently satis�ed. Each of these active TOPs indicate that

the learner expects the postcondition literal for that TOP to become true if a is

executed for a su�ciently long time. If this expectation fails, the learner can identify

a negative occurrence of the TOP.

In general, there are four possible outcomes for each active TOP
a
!� during a

teacher observation:

� The postcondition literal � may become true while a is executed. In this case,

the intermediate states will be identi�ed as positive instances as described in

Section 4.3.

4.4. GENERATING NEGATIVE INSTANCES 85

� The estimated preimage condition P may become false during execution, with-

out � ever becoming true. The learner can thus assume that the TOP has failed

and record a negative occurrence.

� The action a may be executed for longer than the timeout period for the TOP,

at which point the learner can again identify a negative occurrence of the TOP.

� The teacher may switch to a di�erent action before any of the other three cases

has occurred. In this case there is little useful we can learn about the preimage

of the TOP
a
!� from the observation, although we may be able to identify

delete list elements of the TOP.

Once the learner has observed a negative occurrence of a TOP
a
!�, it will record

negative instances in the same way in which positive instances are recorded from

positive occurrences. Given a state-action sequence

Si a Si+1 a : : :a Si+k

in which a failure was detected in state si+k, and si+j j= P for all 0 � j < k,

then each si+j is a state in which P held but the expected e�ect � did not occur.

Therefore, each of the state descriptions Si+j can be recorded as a negative instance

for the preimage condition of
a
!�. This process is otherwise identical to the positive

instance generation process discussed in Section 4.3.

The above instance generation process assumes that the learner has an approx-

imation P of the preimage condition at the time at which it is generating negative

instances. This assumption presents a problem when a TOP is initially generated, as

it will not have any initial preimage estimate. Rather than assume that the preimage

condition is T , TRAIL instead uses a two-step learning process to learn the preimage

when it initially creates a TOP from an experience record. TRAIL �rst generates pos-

itive instances as described in Section 4.3, then learns a preimage condition based on

those positive instances, and �nally uses this condition as an initial preimage estimate

for generating negative instances. This method of course assumes that the learner

can generate a useful concept from positive instances only, a problem that will be

discussed in Section 5.5.5.

86 CHAPTER 4. INSTANCE GENERATION IN TRAIL

4.5 Instance Generation in Other Systems

Most of the previous work on action-model learning has focused on the generation of

positive instances. LIVE, EXPO, and OBSERVER all used STRIPS-like action represen-

tations, which largely avoid the need for the type of failure analysis discussed in this

chapter. Instead, this earlier work concentrated on exploration and experimentation,

two areas that were largely ignored in TRAIL. DeJong's continuous domain planner

uses a more expressive model of actions which addresses some of the same issues ad-

dressed by TRAIL, but his representation is very di�erent from that used in TRAIL.

This section discusses the instance generation process in these four systems and their

di�erences from TRAIL.

4.5.1 Instance Generation in LIVE

In Shen's LIVE system (Shen 1994), instance generation can be roughly divided into

three sources: exploration, execution, and experimentation. Since the LIVE environ-

ments are generally STRIPS-like, action traces correspond exactly to the STRIPS-like

execution traces discussed in Section 4.2, and learning is done based on the di�erences

between successive states.

Exploration in LIVE arises from situations in which LIVE is unable to �nd an

applicable action model to achieve some goal it has been given. If this situation

arises, LIVE tries random actions according to several heuristics, particularly focusing

on those actions that do not yet have any known e�ects. If one of these random

actions has an e�ect in the environment, a positive instance is generated, otherwise

no instances are generated.

Execution refers to situations where LIVE's planner has constructed a plan and

the plan fails to have its intended e�ect. Since actions in LIVE are atomic units that

have a set of predicted e�ects, each action in the plan either succeeds or fails. If an

action does not have its expected e�ects, LIVE detects a \surprise" and essentially

generates a negative learning instance.

Experimentation in LIVE, like exploration, arises from planning failures. If LIVE's

planner encounters either an in�nite regression or a situation where two subgoals are

4.5. INSTANCE GENERATION IN OTHER SYSTEMS 87

mutually interfering, it assumes that one of the models used in planning must be

incorrect. Since planning failures arise from over-specialized preconditions, LIVE in

this situation creates an experiment in which the action can be applied in a state where

it is not expected to succeed. If the action does succeed, LIVE again detects a surprise,

this time a positive instance that can be used to generalize the model's precondition.

Note that TRAIL does not have any similar mechanism for doing experimentation to

correct overly speci�c operator preconditions.

4.5.2 Instance Generation in EXPO

The example generation process in Gil's EXPO system (Gil 1992) can also be divided

up into exploration, execution, and experimentation. When EXPO executes an oper-

ator, it observes the e�ects of the operator. If the operator has the expected set of

e�ects, it is not changed. If one or more of the expected e�ects does not occur, EXPO

generates a negative instance of that operator. EXPO then uses its experimentation

process, described below, to correct the precondition. Finally, if an unexpected ef-

fect of an existing operator is observed, a similar experimentation process is used to

construct a model for conditional e�ects of that action.

Experimentation is the primary emphasis of the EXPO system. The main use of

experimentation in EXPO is in correcting operator preconditions. Once EXPO has

observed a negative instance, it is compared with previous successful applications of

the operator to generate a set of di�erences. EXPO then experiments to determine

which of these di�erences should be added to the existing precondition. In each

experiment, EXPO plans to achieve a state in which some of the di�erences hold, then

applies the operator and observes the results. Thus, a positive or negative instance

is generated from the experiment and eventually used to update the precondition.

Only a few of EXPO's learning methods could really be classi�ed as exploration,

and even those methods are described as another form of experimentation. A typical

example is the generation of new operators by direct analogy: once EXPO has seen

an operator have some e�ect, it can try the same action using di�erent, but related,

objects. Gil gives an example where EXPO initially has an operator to drill with a

high helix drill bit, then experiments to determine what happens if it applies the same

88 CHAPTER 4. INSTANCE GENERATION IN TRAIL

action using a twist drill bit instead.

4.5.3 Instance Generation in OBSERVER

Wang's OBSERVER system (Wang 1995b) is probably the most similar to TRAIL in

terms of learning methodology. OBSERVER also learns both from problem-solving

traces provided by a domain expert and from its own planning and execution. Each

of these processes generate instances, which are used to generate preconditions using

a learning algorithm similar to version spaces (Mitchell 1982). However, the instance

generation process in OBSERVER is considerably simpler than the instance generation

process in TRAIL.

OBSERVER generates only positive instances from its observations of the expert.

Each state in which an operator was applied by the expert corresponds to a positive

instance of that operator. The partially-learned operators are then used to plan solu-

tions to a set of practice problems. During the execution of these plans, OBSERVER

generates further instances for learning. If an operator changed the value of any pred-

icate in some state, then that state is identi�ed as a positive instance of the operator,

otherwise it is identi�ed as a negative instance. These instances are then used to

update the operator precondition, creating conditional e�ects if necessary in order to

explain states where the same operator had di�erent e�ects.

4.5.4 Instance Generation in DeJong's Continuous Domain

Planner

DeJong's (1994) work on learning to plan in continuous domains does not exactly

fall under the category of action-model learning, but it does involve learning models

of processes, models that are later used in planning. DeJong's explanations are a

combination of qualitative models of processes and quantitative models of speci�c

variables. Thus, his explanations are very di�erent from the action models used by

LIVE, EXPO, OBSERVER, and TRAIL.

DeJong's system learns explanations from experience traces, which are very similar

to the continuous experience records discussed in Section 4.2. The actual learning

4.5. INSTANCE GENERATION IN OTHER SYSTEMS 89

is done in two phases. First, the learner hypothesizes a qualitative model of the

process that matches the observed behavior of the system. Second, it uses curve-

�tting techniques to build a quantitative model of the variables involved. This is a

very di�erent process from the framework of instance generation and concept learning

discussed in this chapter.

As in TRAIL, experience records arise from two sources, observations of a domain

expert and execution of plans. The initial experience record serves as a \positive

instance" in that explanations are hypothesized based on the record. Once a plan is

created from the explanations, there are two types of failures that can occur. A plan

will predict values for the variables in the environment. If these predictions are o� by

small amounts, the learner generates new numeric data points, which the curve �tting

algorithm uses to produce a new quantitative model. If a prediction is qualitatively

wrong (for instance, a value is increasing when it should be decreasing,) the learner

rejects the current qualitative model and generates a model that is consistent with

the newly observed behavior as well.

90 CHAPTER 4. INSTANCE GENERATION IN TRAIL

Chapter 5

Learning in TRAIL Using ILP

We now turn to examining the learning problem that results from the instance gener-

ation process described in the previous chapter. Recall that the instances generated

are descriptions of states of the world. These descriptions are in the form of conjunc-

tions of positive ground literals. For learning purposes, we make the Closed World

Assumption, so a number of negated literals are also implied by each description.

Each described state is labeled as a positive or negative instance of a particular TOP,

indicating whether TRAIL considers it to be part of the preimage region or not. TRAIL

can then use various concept learning techniques to estimate the preimage of the

TOP. The exact format of these instances, and the methods that TRAIL uses to learn

from them, are discussed beginning in Section 5.2.

5.1 Introduction to ILP

Inductive Logic Programming (Lavra�c & D�zeroski 1994, Muggleton 1992), or ILP,

is a specialized subarea of machine learning aimed at learning concepts in domains

that are too complicated for traditional concept learning algorithms. Most concept

learning algorithms assume that each instance can be described in an attribute-value

format, using a set of attributes that are either binary or ordinal. In many cases,

learning algorithms have been extended to handle continuous attributes as well, but

the more complicated cases, where the instances are described in �rst-order logic, are

91

92 CHAPTER 5. LEARNING IN TRAIL USING ILP

still beyond attribute-value machine learning algorithms.

A few examples should make this point clear. First, consider a a database of family

relationships, such as Father(John;Mary) ^ Mother(Ann; John) ^ : : : Suppose a

learner is attempting to learn the concept of Grandmother(?x; ?y). (This problem

is obviously quite arti�cial, but it is a standard conceptual example found in the

ILP literature.) The learner is given the database of relationships, a set of positive

instances, such as Grandmother(Ann;Mary) ^ : : :, and a set of negative instances,

such as :Grandmother(John;Mary) ^ : : :. From this set of instances, it needs to

learn a description of the concept Grandmother. An attribute-value learner would

only be able to induce concepts in terms of the arguments of Grandmother, which is

clearly insu�cient for this problem. In order to learn a description of Grandmother,

the learner needs to introduce a new variable ?z that represents the intermediate

generation between grandmother and grandchild. Furthermore, it must also be able

to specify relations among arguments and variables, such as Mother(?x; ?z), which

is impossible in most decision tree inducers or neural network learners.

Our second example is more directly related to action-model learning. Suppose

we have a number of states from the O�ce Delivery domain described in �rst-order

logic. Each state is a case where an operator is known to have succeeded or failed.

A plausible scenario consisting of several such instances is shown in Table 5.1. We

wish to learn a concept that covers only the successful instances and none of the fail-

ures. In a way, this problem is similar to the standard concept learning problem, as

each instance is an independent list of literals. But as in the Grandmother example,

we cannot simply give the problem shown in Table 5.1 to an attribute-value concept

learner and expect it to learn. The literals in each instance cannot easily be converted

to propositional or numeric features. The problem is that the literals are structured -

the arguments of a literal refer to objects in the world, and an object can be an argu-

ment of several di�erent literals, all of which may be relevant to the learning problem.

Such instances can, in many cases, be transformed into propositional instances, but

this process is non-trivial, and will be examined further later in this chapter.

Inductive Logic Programming is a technique that is designed to solve this type

of structured learning problem. A very readable introduction to ILP can be found

5.2. LIMITED ILP FOR ACTION-MODEL LEARNING 93

Success: Robot was able to make 7 copies of Article1
At(Robot;Room20) ^ At(Xerox2; Room20) ^Has(Robot;Article1)^
Mode(Xerox2; Copy) ^ Paper(Xerox2; 100) ^ : : :

Success: Robot was able to make 5 copies of Article2
At(Robot;Room30) ^ At(Xerox3; Room30) ^Has(Robot;Article2)^
Mode(Xerox3; Copy) ^ Paper(Xerox3; 150) ^ : : :

Failure: Robot was not able to make 4 copies of Article2
At(Robot;Room27) ^ At(Xerox2; Room20) ^At(Xerox3; Room30)^
Has(Robot;Article2) ^ : : :

Failure: Robot was not able to make 5 copies of Article1
At(Robot;Room30) ^ At(Xerox3; Room30) ^Has(Robot;Article1)^
Mode(Xerox3; Copy) ^ Paper(Xerox3; 1) ^ : : :

Table 5.1: Instances For Learning an Operator for copy

in Lavra�c & D�zeroski (1994), while a collection of ILP-related papers is found in

Muggleton (1992).

5.2 Limited ILP for Action-Model Learning

The basic de�nition of ILP is as follows: given a set of labeled training instances

E (called the foreground knowledge) and some set of background knowledge B, �nd

a hypothesis H, expressed in some hypothesis language, that correctly predicts the

labels for most or all of the training instances.

A hypothesis normally consists of one or more clauses, each of which has the target

concept as a consequent. We say that an instance e 2 E is covered by a clause C

with respect to background knowledge B if and only if B [C j= e. An instance is

covered by a hypothesis if and only if it is covered by at least one of the clauses in

the hypothesis.

94 CHAPTER 5. LEARNING IN TRAIL USING ILP

In the Grandmother example from the previous section, a hypothesis that might

be learned is the following:

C1: Grandmother(?x; ?y) Mother(?x; ?z) ^Mother(?z; ?y)

C2: Grandmother(?x; ?y) Mother(?x; ?z) ^ Father(?z; ?y)

The positive instance Grandmother(Ann;Mary) is covered by the clause C2 in the

above hypothesis. Note that the two background facts Mother(Ann; John) and

Father(John;Mary) together with the clause C2 logically entail the positive instance,

Grandmother(Ann;Mary).

In ILP, then, our goal is to �nd a hypothesis H such that, given the background

knowledge B, all of the positive instances E+ are covered by the hypothesis H while

none of the negative instances E� is. If we allow the concept to be inexact (presum-

ably due to the presence of noise in the domain), we will simply require that most

of the positive instances and few of the negative instances are covered, using some

appropriate measure of the correctness of the concept over the instances.

It is not immediately obvious how this framework of instances and background

knowledge corresponds to the delivery domain problem shown in Table 5.1. Here,

none of the available knowledge applies across multiple instances, unlike the family

relationship database mentioned in the Grandmother example. Also, the instances

themselves aren't directly in the format of positive and negative literals to be covered.

The conversion of the TOP preimage instances to the standard ILP framework is

actually fairly straightforward. Figure 5.1, which shows the ILP conversion process

for two of the delivery domain instances from Table 5.1, should help make the steps in

this process clear. First, recall that each instance describes a state of the world. We

reify this state, as in the situation calculus (McCarthy & Hayes 1970), adding a state

argument STi to each literal in the description of instance Si. The literals describing

each instance (with state arguments included) form the background knowledge for

the ILP learning problem.

Next, we need to introduce the predicate to be learned. This predicate is called

InPreimage(STi) and is labeled as either positive or negative for each STi depending

on whether instance Si was a success or a failure. This set of InPreimage literals

5.2. LIMITED ILP FOR ACTION-MODEL LEARNING 95

will form the foreground knowledge E for the Inductive Logic Programming problem.

Next, we note that by examining the action and intended e�ect of each instance,

we can determine a set of bindings for the TOP variables of the TOP that is being

learned (see Section 2.3). Consider the examples in Table 5.1, which describe the use

of the copy(?obj,?x) action to achieve the predicate Has(Robot; copies(?n; ?obj))

in several situations.1 The TOP variables for this TOP are ?n, ?obj, and ?x, and

each of these variables may be bound di�erently in each instance, according to the

action taken and the intended e�ect in that instance. In order to be able to generalize

over these instances, the induced concept for the InPreimage predicate must be able

to refer to these TOP variables. Therefore, each InPreimage predicate contains

as arguments the bound values of the TOP variables in the instance, as well as

the state argument associated with the instance.2 The intended semantics of the

literal InPreimage(X1;X2; : : : ;Xn; STi) is that if the TOP variables are bound to

the values X1;X2; : : : ;Xn then the state represented by the state argument STi is in

the preimage region of the TOP. The learned concept for the InPreimage predicate

can be converted to the preimage of the TOP by simply dropping the state argument

from each literal and taking the disjunction of all of the clauses in the concept. Again,

Figure 5.1 should help make this process clear.

The learning problem that results from this conversion di�ers in several ways from

the general ILP learning problem. First o�, the background knowledge (which de-

scribes the observed positive and negative instances) is partitioned by the introduced

state argument; each background literal pertains to one and only one foreground

InPreimage instance. We can use this fact to essentially disregard the state argu-

ments while learning, as described more fully in Section 5.4. Furthermore, all of the

background knowledge is guaranteed to consist of ground literals, since each instance

describes one particular state of the world. We also observe that the learned concepts

for InPreimage will not contain other InPreimage literals, so there is no need for

the various techniques used in recursive ILP. On the other hand, it is important to

1Note that ?n is not an argument of the copy operator; copy is a durative action that can be
continued until the proper number of copies are made. ?x refers to the Xerox machine on which the
copies are being made.

2The order of the arguments is not relevant as long as they are consistent across instances.

96 CHAPTER 5. LEARNING IN TRAIL USING ILP

The TOP:

Action: copy(?obj,?x)
Postcondition: Has(Robot; copies(?n; ?obj))

Instances seen by learner:

copy(Article1,Xerox2) achieves Has(Robot; copies(7; Article1)) in:
At(Robot;Room20) ^ At(Xerox2; Room20) ^Has(Robot;Article1)^
Mode(Xerox2; Copy) ^ Paper(Xerox2; 100) ^ : : :

copy(Article2,Xerox2) fails to achieve Has(Robot; copies(4; Article2)) in:
At(Robot;Room27) ^ At(Xerox2; Room20) ^At(Xerox3; Room30)^
Has(Robot;Article2) ^ : : :

Background facts:

At(Robot;Room20; ST1) At(Xerox2; Room20; ST1) Has(Robot;Article1; ST1)
Mode(Xerox2; Copy; ST1) Paper(Xerox2; 100; ST1) : : :

At(Robot;Room27; ST2) At(Xerox2; Room20; ST2) At(Xerox3; Room30; ST2)
Has(Robot;Article2; ST2) : : :

Foreground facts:

+ InPreimage(7; Article1;Xerox2; ST1)
- InPreimage(4; Article2;Xerox2; ST2)

Possible learned concept:

InPreimage(?n; ?obj; ?x; ?st) Has(Robot; ?obj; ?st) ^At(Robot; ?p; ?st)^
At(?x; ?p; ?st)

TOP preimage condition:

Has(Robot; ?obj) ^At(Robot; ?p) ^ At(?x; ?p)

Figure 5.1: The Preimage Learning Process Using ILP

5.3. OVERVIEW OF EXISTING ILP ALGORITHMS 97

note that the learned concepts for InPreimage may need to include interval condi-

tions on the variables used in the concepts. Thus, whatever ILP algorithm we use

must be able to handle intervals.

One additional piece of domain knowledge that is often given to ILP learners

should be mentioned here, as it turns out to be both practical and very useful for

preimage learning. This is the idea of mode declarations of predicates, as used in

GOLEM (Muggleton & Feng 1990) and FOIL2.0 (Quinlan 1991). In general, if a pred-

icate is a one-to-one mapping, we can simplify the learning process by viewing it as

a function and specifying that the arguments corresponding to the outputs of the

function are output arguments, while the other arguments are input arguments.3 For

example, At(?x; ?p) is a one-to-one mapping giving the location of object ?x, so we

can label ?x as an input argument and ?p as an output argument. On the other

hand, Near(?p; ?q) is a many-to-many mapping expressing whether two locations are

near each other, so each argument must be viewed as an input argument. It is also

possible to have functional predicates whose arguments are output-only; for instance,

the predicate CurrentT ime() is clearly an output-only function.

For the purposes of TRAIL, as in a number of other ILP systems, input and output

arguments are not precisely de�ned properties of a domain, but rather a method of

providing useful information to the learner. The domain designer can give the system

a set of declarations expressing the mode of the arguments of each predicate, which

TRAIL uses to simplify the learning process, as described in Section 5.4. TRAIL's

learning system will in fact function regardless of the predicate mode declarations.

However, it generally learns more e�ectively if the mode declarations correspond to

the intuitive usage of the predicates in the domain.

5.3 Overview of Existing ILP Algorithms

Over the past few years, the �eld of Inductive Logic Programming has grown signif-

icantly. The �eld is much too large to give a complete overview here, so we instead

3Mode de�nitions can also be used for the purpose of assigning types to variables in Inductive
Logic Programming systems. TRAIL's learning system does not do this at present.

98 CHAPTER 5. LEARNING IN TRAIL USING ILP

present a brief summary of three classic ILP systems. A good textbook introducing

the �eld is Lavra�c & D�zeroski (1994). Muggleton's (1992) book provides a useful

collection of papers, although there have been considerable developments in the �eld

since then, particularly in the area of theory (Frazier & Page 1993, D�zeroski, Mug-

gleton & Russell 1993, D�zeroski 1995).

5.3.1 FOIL

The �rst widely publicized ILP learning algorithm was Quinlan's FOIL (1990). FOIL

attempts to cover the positive instances in the foreground knowledge by generating a

series of clauses via an approach similar to the AQ systems (Michalski 1983). It begins

with a set of labeled positive and negative instances and an empty hypothesis. In each

cycle of the algorithm, a clause is generated that covers some of the positive instances

and as few of the negative instances as possible. After a clause has been added to the

hypothesis, the covered positive instances are removed from the instance set. This

process repeats until the algorithm decides it has covered su�ciently many of the

positive instances. TRAIL uses a similar covering algorithm, discussed in Section 5.5.1.

The added clauses themselves are generated using a greedy information-based

search similar to that used in other machine learning algorithms, particularly ID3

(Quinlan 1986). The learner begins the clause search process with an empty clause,

which by de�nition covers all of the instances. It then repeatedly specializes the clause

by adding new literals, until either the clause covers no more negative instances or

a length restriction is violated (thus preventing the learned clause from becoming

too complex and over�tting the data.) The new literals are drawn from one of the

following categories:

� Li(V1; V2; V3; : : :) where Li is some predicate in the domain and the Vj are vari-

ables, including at least one variable that is already included in the head or

body of the clause.

� Xi = Xj where Xi and Xj are both input variables, i.e. variables in the head of

the clause.

5.3. OVERVIEW OF EXISTING ILP ALGORITHMS 99

� Negations of one of the above.

The metrics that are used for deciding which literal to add to the clause and for

deciding when to stop adding literals to the clause are discussed in more detail in

Section 5.5.3. Brie
y, literals are chosen that reduce the entropy of the instances

covered by the clause, according to a metric known as weighted information gain.

The process is terminated any time the encoding length of the clause becomes longer

than the number of bits required to explicitly indicate which positive instances are

covered by it.

There are several di�culties with FOIL from the point of view of action-model-

preimage learning. First, the expressive power of the learned clauses is limited; FOIL

does not allow the learner to include a literal that speci�es that a variable must be

bound to a particular value (although this feature has been added to a later version

of FOIL (Cameron-Jones & Quinlan 1993).)

Second, the various metrics used in FOIL for deciding which literal to add to a

clause, when to stop adding literals to a clause, and when to stop adding clauses to

a concept do not provide very satisfactory noise handling. This issue is examined in

more detail in Section 5.5.3.

Finally, FOIL's greedy search strategy makes it very di�cult for it to learn concepts

that involve a conjunction of connected literals. For example, consider the precon-

dition of the copy(?obj, ?x) TOP described in Figure 5.1. One of the conditions

needed for the TOP to succeed is that the robot and the copier must be in the same

location. Since the copier is included as an argument of the InPreimage literal, this

condition can be expressed within the limitations of the FOIL hypothesis language

as something like At(Robot; ?p) ^ At(?x; ?p). However, it would be very di�cult for

FOIL to actually learn this conjunction: the literal At(Robot; ?p) holds in every in-

stance (presumably) and so does not provide any discrimination between positive and

negative instances. The literal At(?x; ?p) similarly does not provide any useful infor-

mation. Therefore, neither literal would be added to the clause at any point unless

both could somehow be added together. Adding both literals to the clause would re-

quire some form of lookahead in the search, greatly increasing the search cost. (This

di�culty, known as the connected literal problem, is a general problem that plagues

100 CHAPTER 5. LEARNING IN TRAIL USING ILP

many Inductive Logic Programming systems.)

5.3.2 GOLEM

The ILP system GOLEM (Muggleton & Feng 1990) adopts a considerably di�erent

approach to Inductive Logic Programming. Like FOIL, GOLEM is based on the idea of

creating covering clauses. The learner repeatedly generates single clauses that cover

some positive instances and as few negative instances as possible, continuing until a

satisfactory number of the positive instances are covered.

Where the algorithms di�er is in the method used to construct the covering clauses.

Instead of starting with the concept T and specializing by adding literals, GOLEM

works by starting with speci�c positive examples and generalizing them by computing

the Relative Least General Generalization of the instance and other instances. This

is known as a bottom-up approach to ILP, as opposed to the top-down approach of

systems such as FOIL.

In order to explain GOLEM, we need to explain the concept of Relative Least

General Generalization (or rlgg) in more detail. The concept of lgg, or Least General

Generalization (Plotkin 1969), is well known in logic. Intuitively, the lgg of two

clauses is the most speci�c clause such that for each clause, there is a substitution

that transforms the lgg into a subset of that clause. For instance, the lgg of the two

clauses F (2) G(1; 2) ^H(2; 3) and F (3) G(1; 3) ^ I(2; 3) is F (?x) G(1; ?x).

Given two instances e1 and e2 and background knowledge B, the rlgg of the

instances is then de�ned as the least general generalization of the instances relative

to the background knowledge. Formally, we have the following:

rlgg(e1; e2) = lgg((e1 B); (e2 B))

Roughly, the rlgg of two instances is an implication in which the head of the implica-

tion is a generalization of the instances themselves, and the body consists of all facts

that hold for both instances in the background knowledge. In the case where each

instance describes a situation, the body of the rlgg thus expresses those facts that are

common to the two situations described by the instances. Rlggs tend to be very large

in general, especially in cases where there is a large amount of background knowledge.

Therefore, they are usually pruned to contain only those facts that are considered to

5.3. OVERVIEW OF EXISTING ILP ALGORITHMS 101

be relevant to the instances. Rlggs are explained in more detail by Muggleton and

Feng (Muggleton & Feng 1990); the exact de�nitions will not be needed here.

As an example of computing an rlgg, consider once again the copy operator de-

scribed earlier. Suppose we have instances describing two states s0 and s1 in which

the action succeeded. In s0, the ?x variable was bound to Xerox1, while in s1 it

was bound to Xerox2. The situations are rei�ed and assigned names ST0 and ST1,

respectively. As previously mentioned, the bindings of the TOP variables are also

included in the instance predicates. So the instance predicates are something like:

� InPreimage(Robot;Xerox1; ST0)

� InPreimage(Robot;Xerox2; ST1)

A set of background knowledge describes each situation, something like the following:

� At(Robot;R1; ST0)

� At(Xerox1; R1; ST0)

� At(Robot;R2; ST1)

� At(Xerox2; R2; ST1)

As it turns out, in computing the rlgg, we can limit the background knowledge for

each instance to those literals that use the same situation argument. Therefore, the

rlgg of the two instances above is exactly the lgg of the following two clauses:

� InPreimage(Robot;Xerox1; ST0) At(Robot;R1; ST0)^At(Xerox1; R1; ST0)

� InPreimage(Robot;Xerox2; ST1) At(Robot;R2; ST1)^At(Xerox2; R2; ST1)

We leave it as an exercise for the reader to show that the lgg of these two clauses

is in fact

InPreimage(Robot; ?x; ?st) At(Robot; ?p; ?st) ^At(?x; ?p; ?st)

(After removing a few extraneous clauses such as those containing the variable that

generalizes Robot and Xerox1.)

102 CHAPTER 5. LEARNING IN TRAIL USING ILP

When generating a new clause, GOLEM begins by randomly choosing pairs of pos-

itive instances and computing their rlggs with respect to the background knowledge.

Since it is computing a generalization, both instances will be covered by the learned

concept. Since it is computing the least general generalization, the concept will not

cover any more negative instances than necessary. Among all the clauses generated

from pairs of instances, one is chosen that maximizes coverage while not covering

too many negative instances. This clause is further generalized by randomly choosing

other positive instances and computing the rlgg of the clause and the chosen instance,

attempting to �nd a useful extension that again does not cover too many negative

instances. Once no further extensions can be made, GOLEM adds the clause to its

concept de�nition and begins searching for other clauses.

GOLEM is in many ways a natural way of computing action-model preimages. The

notion of an rlgg intuitively �ts the preimage learning problem - �nding a general-

ization that covers those situations where the action works. As was shown in the

example above, GOLEM does not su�er from the connected literal problem discussed

in the previous section. Furthermore, the fact that the background knowledge is

partitioned by the state argument makes the rlgg computation process considerably

simpler. An earlier version of TRAIL was in fact based on a learner that computed

rlggs of instances and learned in a manner very similar to GOLEM.

However, there is one main problem with GOLEM that prevented it from being very

useful for preimage computation. It turned out to be very di�cult to get the GOLEM-

based version of TRAIL to handle noise e�ectively. First, unlike in the case of FOIL,

information-based search is very expensive, since each step involves computing a new

rlgg. Second, we were unable to �nd any principled method of deciding when to stop

expanding the rlgg and begin a new one. (Note that this problem is very similar to

the stopping problem in FOIL.) Therefore we elected to switch to a top-down learning

algorithm for the latest version of TRAIL.

5.3.3 LINUS and DINUS

The ILP system LINUS (Lavra�c, D�zeroski & Grobelnik 1991) is based on the obser-

vation that there is already a large and well-developed literature on concept learning

5.3. OVERVIEW OF EXISTING ILP ALGORITHMS 103

using attribute-value representations of instances. If the ILP learning problem can

be transformed so that it is expressible in terms of boolean features, then standard

machine learning algorithms such as C4.5 (Quinlan 1992) and CN2 (Clark & Niblett

1989) can be used to learn a set of rules that express a concept. These rules can then

be transformed back into �rst-order logic. (Sub-symbolic learning techniques such as

neural networks are less appropriate for this application since it is di�cult to convert

the learned concept back into a symbolic preimage.)

The transformation process in LINUS is fairly simple. It makes use of predicate

modes for literals in the domain, as introduced in Section 5.2. For the following

example, let G(?x; ?y) be an input-only predicate and H(?x; ?y; ?z) be a predicate

in which the �rst two arguments are inputs and the last argument is an output.

Now, given that we are attempting to learn a concept F (V1; V2; V3; : : :), the following

\features" are constructed:

� Bindings of input variables to values, e.g. Vi = a

� Equalities among input variables, e.g. Vi = Vj

� Literals from the domain with input arguments from among the input variables,

e.g. G(Vi; Vj)

� Literals from the domain with input arguments from among the input variables

and output arguments that are constants, e.g. H(Vi; Vj; a)

Each instance provides a binding of the variables V1 : : : Vn. LINUS uses these

bindings, together with the background knowledge, to compute truth values for each

of the above literals for each instance in the obvious manner. Therefore, it has a

set of features and values for each instance. These are then given to an attribute-

value learning system, which induces a concept in terms of the features. LINUS then

transforms this concept back into �rst-order logic, using the above feature de�nitions.

The LINUS system is quite limited in its usefulness for real ILP problems. In most

ILP domains, including preimage learning, a learner needs to be able to include new

variables in the learned concepts, and LINUS is unable to do so. However, there is

an extension of LINUS known as DINUS (D�zeroski et al. 1992) that uses the same

104 CHAPTER 5. LEARNING IN TRAIL USING ILP

framework but does allow the introduction of new variables, using determinate liter-

als with speci�ed predicate modes. Determinate literals, which will be explained in

Section 5.4, introduce new variables that have uniquely de�ned values for each in-

stance. These new variables can then be used in the creation of new features. DINUS

is quite similar to the TRAIL learning system, which will be discussed in detail in the

remainder of this chapter.

5.3.4 Applications

Aside from its applicability to preimage learning, Inductive Logic Programming has

a number of other potential applications that are interesting to examine here. Most

of the examples given in the ILP literature are trivial demonstration examples, such

as family relationship databases and simple recursive LISP functions. However, there

are a number of more realistic applications where ILP may prove useful. A more

detailed overview of these applications is found in Bratko and Muggleton (1995).

One commonly cited application of ILP is the design of �nite element meshes for

analyzing stresses in physical structures (Dolvsak, Bratko & Jezernik 1994). Given

some physical structure that is to be modeled, the modeler needs to decide on how

�nely meshed the model will be in each part of the structure. If the model is too

coarsely meshed the simulation will be inaccurate, while if it is too �nely meshed it

will be too computationally expensive. The process of deciding on an appropriate

resolution for each part of the structure is complicated and depends on the shape

of the structure, the stresses applied, and the boundary conditions. The problem is

very di�cult for traditional attribute-value learners because the answers depend on

relations between the primitive components of the structure, which �t more naturally

into a �rst-order representation.

The problem of predicting secondary structure of proteins is another widely stud-

ied problem, with features similar to the �nite element mesh design problem. The

secondary structure of a protein (its three-dimensional spatial structure) depends on

the elements of the protein and the relationships between them in complex ways,

which are suitable for representation as an Inductive Logic Programming problem.

GOLEM was applied to this problem (which is an important unsolved problem in

5.4. AN INDEXICAL-FUNCTIONAL VIEW OF ILP 105

molecular biology) and achieved 81% success on their testing set (Muggleton, King &

Sternberg 1992), better than the previous best known result, which had used a neural

network approach.

A related problem is concerned with predicting the activity of molecules given

their structure. King, Sternberg & Srinivasan (1995) have investigated this problem,

and found that an ILP algorithm outperformed both linear regression and decision

trees when applied to complex compounds. Furthermore, the theories constructed by

ILP were more understandable than those created by attribute-value methods.

5.4 An Indexical-Functional View of ILP

The concept learning algorithm in TRAIL is based on applying the concept of indexical-

functional variables (Agre & Chapman 1987, Schoppers & Shu 1990) to the preimage

instances. Recall that the InPreimage literals have two distinct types of arguments:

the rei�ed state argument and the set of bindings of the TOP variables. (Again, the

intended semantics of the literal InPreimage(X1;X2; : : : ;Xn; STi) is that if the TOP

variables are bound to the values X1;X2; : : : ;Xn then the state represented by the

state argument STi is in the preimage region of the TOP.)

In the remainder of this chapter, we will see that by viewing the TOP vari-

able arguments and other variables as indexical-functional variables, we can easily

re-represent the �rst-order instance descriptions in propositional form. This allows

TRAIL to learn TOP preimages using a method very similar to the method used in

the ILP system DINUS that we described in the previous section.

5.4.1 Indexical-Functional Variables

An indexical-functional variable, or IFV, is used to refer to an object that �lls a

particular role in a situation without knowing the speci�c identity of the object.

Typical IFVs are variables such as Location-of-Robot and Object-held-by-arm.

Although an IFV may change value across situations, we can refer directly to the IFV

in literals that describe the situations.

106 CHAPTER 5. LEARNING IN TRAIL USING ILP

?n Number-of-copies-made

?obj Object-copied

?x Copier

Table 5.2: Indexical-Functional Representations of copy TOP Variables

Observe that the TOP variables for a TOP take on di�erent values in each de-

scribed situation, and thus can be represented using IFVs. Since the non-state argu-

ments of the InPreimage literals correspond to the set of TOP variables, these argu-

ments can naturally be represented using IFVs as well. For instance, in the copying

example from Figure 5.1, the arguments of the literal InPreimage(?n; ?obj; ?x; ?st)

have the indexical-functional meanings shown in Table 5.2.

Thus, the �rst literal of the induced preimage for the copy TOP can be viewed

in indexical-functional terms as Has(Robot,Object-copied). Of course, the learner

does not have any such English-ized representation of the IFVs, but using these

indexical-functional names is an intuitive way of conceptualizing what the learner is

doing.

The most interesting result of representing the variables in an induced ILP con-

cept as IFVs comes in analyzing the other variables that are included in the con-

cept. Consider the second literal in the induced preimage for the TOP in Figure 5.1,

At(Robot; ?p; ?st). The variable ?p corresponds to the IFV Location-of-Robot,

meaning that the literal is the vacuous condition At(Robot,Location-of-Robot).

However, the third literal, At(?x; ?p; ?st) becomes At(Copier, Location-of-Robot),

which is of course a crucial precondition for the action to succeed. This ability to

refer to variables such as Location-of-Robot across multiple literals is one of the

main advantages of using ILP for learning.

The formal de�nition of induced IFVs follows from the predicate mode de�nitions

mentioned earlier. We begin by adopting the notion of determinacy from the system

GOLEM (Muggleton & Feng 1990). For our purposes, a literal is determinate if, given

any binding of its input arguments in a situation, each of its output arguments has at

most one possible binding. (The situation argument in each literal is always treated

5.4. AN INDEXICAL-FUNCTIONAL VIEW OF ILP 107

as an input variable and does not actually get used.) In other words, each output

argument must be a function of the input arguments and the state argument. For

instance, the literal At(?x; ?y) is determinate if we consider ?x as an input and ?y as

an output, since each binding of ?x in a situation will produce only one binding for

the location argument ?y. However, if we consider ?y as an input and ?x as an output,

At(?x; ?y) is not determinate because each location may contain several objects or

people. Note that by the de�nition above, a literal that has only input arguments

is always determinate. A literal that has only output arguments, such as the literal

Altitude(?x) in the Flight Simulator domain, may or may not be determinate.

Indexical-functional variables, then, can be used to represent the output argu-

ments of determinate literals as well as the TOP variables. A determinate output-only

literal produces a single IFV for each argument. An input-only literal produces no

IFVs at all. And for determinate literals containing both input and output arguments,

each possible assignment of a set of variables to the input arguments produces a new

IFV for each output argument. Consider the literal Has(?x; ?y), in which ?y is an in-

put argument and ?x is an output argument. If ?y is set to Object-copied, the output

argument corresponds to the new IFV Possessor-of-Object-copied, while if ?y is

set to Copier, the output argument is Possessor-of-Copier. The input arguments

can be derived IFVs as well; consider Location-of-Possessor-of-Object-copied.

Finally, the input arguments can also be special domain constants, such as Robot,

that are likely to be useful in learning several operators. For instance, a variable such

as Location-of-Robot is probably relevant to many di�erent TOPs. These domain

constants are included in the speci�cation of the domain by the designer.

The process for creating IFVs given a particular state description is an iterative

cycle, which is illustrated by an example in the next section. At any point during the

IFV creation process, the learner has a set of domain objects it is presently focusing

on, known as active referents. Each active referent is either a domain constant or

the current value of one or more IFVs, annotated appropriately with the names of

the variables that are bound to it. The initial set of active referents consists of

the domain constants plus the value of each TOP variable. (Recall that each TOP

variable corresponds to an IFV.)

108 CHAPTER 5. LEARNING IN TRAIL USING ILP

Now, on each step of the cycle, the learner �nds all determinate literals in the

state description such that all of the input arguments are objects in the set of active

referents, including at least one active referent introduced in the previous cycle (to

avoid generating the same IFV multiple times.) A new IFV is assigned to each of

the output arguments for such a literal, and its binding is added to the list of active

referents. This process is repeated as long as new IFVs are created. Note that we are

making the unique names assumption here; if a literal refers to an object constant we

assume that mentions of that object constant in other literals are in fact referring to

the same object in the world. (Actually we allow for exceptions to this rule in the

case of multiple indistinguishable objects, i.e. several copies of a book. The exact

semantics of this exception are complicated and not really relevant here.)

There is one limitation that we place on the IFV generation process. Suppose

that a database contains the literals Father(Bob;Adam) and Father(Adam;Bob).

(Clearly this is either a mistake or a violation of the unique names assumption!) This

pair of literals allows for the creation of an in�nite chain of created literals:

Father-of-Adam

Father-of-Father-of-Adam

Father-of-Father-of-Father-of-Adam

� � �

In order to prevent such an in�nite chain, we add an \occurs-check" that makes

sure that no indexical-functional variable has the same value as any of the IFVs used

to de�ne it. Observe that each IFV is de�ned by a literal, a position, and (possibly)

some set of other IFVs that serve as the input arguments for the literal. These input

IFVs are recursively de�ned in terms of other IFVs, eventually grounding out in TOP

variables or domain constants. Therefore it is easy to perform the occurs-check by

simply comparing the value of the newly created variable to the bindings of all the

variables that are directly or indirectly used in de�ning it.

5.4. AN INDEXICAL-FUNCTIONAL VIEW OF ILP 109

At(Robot;Room101) At(Xerox1; Room101) Mode(Xerox1; Copy)
Author(Article5; Nilsson) Size(Room101; Large) Has(Robot;Article5)
CurrentT ime(1200)

Table 5.3: Description of a State s0

5.4.2 An Example of IFV Computation

Now we will look at an illustration of the IFV computation process in a speci�c situ-

ation, based loosely on the copy-making example introduced in Section 5.1. Suppose

that the action copy(Article5,Xerox1) achieves Has(Robot; Copies(3; Article5))

in a state s0. TRAIL records the description of state s0 as a positive instance of the

TOP
copy(?obj;?x)
�! Has(Robot; copies(?n; ?obj)) with the TOP variables bound as fol-

lows: (?n/3, ?obj/Article5, ?x/Xerox1). A simpli�ed description of state s0 is shown

in Table 5.3. (Note that for simplicity we have not included the Paper predicate in

this example.)

The de�nition of the domain speci�es modes for each of the predicates in the

domain. The predicates At, Mode, Author, and Size are all determinate predicates

with the �rst argument as an input argument and the second argument as an output

argument. The predicate CurrentT ime is a determinate output-only predicate. The

predicate Has we use as an input-only predicate; for any agent and object it tells

whether the agent possesses that object. (Clearly a person can possess more than one

object, and an object can be possessed by more than one person, such as two people

having copies of the same book.)

Formally, the predicate modes for the literals in the domain are:

� At(:input :output)

� Mode(:input :output)

� Author(:input :output)

� Size(:input :output)

� Has(:input :input)

110 CHAPTER 5. LEARNING IN TRAIL USING ILP

Object Variable

3 Number-of-copies-made

Article5 Object-copied

Xerox1 Copier

Robot (domain constant)

Table 5.4: An Initial Set of Active Referents

� CurrentT ime(:output)

We start with four initial active referents: the bindings of the three TOP variables

(Number-of-copies-made, Object-copied, and Copier) and the domain constant

Robot. The active referents are shown in Table 5.4. Note that of course the learner

itself does not use these mnemonic names for the IFVs; we use them merely for ease

of reference. (The learner actually uses arbitrarily named variables.)

In each iteration of the cycle of indexical-functional variable creation, we look at

the literals in our state description and �nd ones for which the input variables match

active referents. Examine the �rst literal, At(Robot;Room101). Its input argument

Robot matches one of the active referents, so the output argument of At de�nes a

new IFV. Since the input argument in this case is the domain constant Robot the

new IFV does not refer to any other IFVs and is simply Location-of-Robot.

The next literal is similar: At(Xerox1; Room101). Again the input argument

Xerox1 corresponds to an active referent so the output is a new IFV. Since the input

is the IFV Copier, the output variable is Location-of-Copier.

The next two literals introduce new variables in the exact same way; the lit-

eral Mode(Xerox1; Copy) leads to the creation of Mode-of-Copier while the literal

Author(Article5; Nilsson) leads to the creation of Author-of-Object-copied.

Neither of the next two literals in the state description introduce any new vari-

ables at all. Size(Room101; Large) is a determinate literal, but the input argument

Room101 does not correspond to any active referent. The literalHas(Robot;Article5)

is an input-only literal and cannot introduce any new IFVs.

Finally, we come to CurrentT ime(1200). CurrentT ime is clearly determinate, as

5.4. AN INDEXICAL-FUNCTIONAL VIEW OF ILP 111

Object Variable

3 Number-of-copies-made

Article5 Object-copied

Xerox1 Copier

Robot (domain constant)

Room101 Location-of-Robot

Location-of-Copier

Copy Mode-of-Copier

Nilsson Author-of-Object-copied

1200 The-time

Table 5.5: Set of Active Referents After the First Cycle

it can have at most one value in each situation. Therefore the value of this output-only

literal is a well-de�ned IFV, in this case corresponding to The-time.

The current set of active referents is shown in Table 5.5 (note that the �rst active

referent, 3, corresponding to Number-of-copies-made, has not been used.)

In the second cycle of the variable creation process, we look again at the lit-

erals describing the situation and see if any new IFVs can be created. In this

case the �rst four literals do not allow anything new to be created, as none of

the variables created on the previous cycle have values that are equal to their in-

put arguments. However, we can now introduce new variables based on the literal

Size(Room101; Large). The input argument for this literal now corresponds to an

active referent, and each variable that is bound to Room101 allows a new IFV to be

created. Thus the learner creates two new variables, Size-of-Location-of-Robot

and Size-of-Location-of-Copier. No further IFVs are created on this cycle, as the

input-only predicate Has(Robot;Article5) still produces nothing and the predicate

CurrentT ime(1200) introduces nothing new.

One might wonder why it is that we create two distinct Size-of IFVs given that

there was only one active referent used. The reason is that in other instances, it

may not be the case that Location-of-Robot and Location-of-Copier are bound

to identical values. Therefore, in other instances, Size-of-Location-of-Robot and

112 CHAPTER 5. LEARNING IN TRAIL USING ILP

Object Variable

3 Number-of-copies-made

Article5 Object-copied

Xerox1 Copier

Robot (domain constant)

Room101 Location-of-Robot

Location-of-Copier

Copy Mode-of-Copier

Nilsson Author-of-Object-copied

1200 The-time

Large Size-of-Location-of-Robot

Size-of-Location-of-Copier

Table 5.6: Set of Active Referents After the Second Cycle

Size-of-Location-of-Copier might have been created from distinct active refer-

ents, and thus could have di�erent values. In order to have the use of IFVs consistent

across instances, we need to have them be distinct variables in every instance, even

when the location that is the input for Size-of is the same.

The full set of active referents is now as shown in Table 5.6. The reader will note

that if a third stage of computation is done, no new variables will be introduced, so

the indexical-functional variable computation is complete for this instance.

5.4.3 Indexical-Functional Instance Representations

The purpose of computing an indexical-functional representation of a situation (as

described in the previous sections) is to allow the learner to generate concepts that

have meaning in multiple situations but may refer to di�erent objects in each of these

situations. For instance, the learner may need to reason about some property of

the TOP variable Object-copied. Although this variable may refer to a di�erent

physical object in each situation, the function of Object-copied is the same across

all of them. The same holds true for derived IFVs, such as Location-of-Robot,

which are computed according to the chaining process described above.

5.4. AN INDEXICAL-FUNCTIONAL VIEW OF ILP 113

Using the set of TOP variables and derived IFVs, the learner can construct a rep-

resentation of each situation entirely in terms of facts about IFVs. This representation

consists of �ve parts.

First, we need a literal that de�nes the value of each derived variable. For instance,

consider the literal At(Copier,Location-of-Copier). Given that the TOP variable

bindings produce a unique value of Copier in each situation, this literal de�nes a

unique value of the derived IFV Location-of-Copier, assuming, of course, that the

literal At(?x; ?y) is determinate. These de�nitions are constant across all situations,

although not all of them may apply in every situation; it is possible that no literal in

a situation description provides a value for some derived IFV.

Second, the learner must record the value in the situation of each of the de�ned

IFVs. The learner will sometimes need to reason about speci�c constants in the

domain. For instance, the value of Mode-of-Copier must be Copy in order for the

copying TOP to work. Reasoning about the values of IFVs is also essential in inducing

interval conditions, as described in Section 5.5.6. We represent this knowledge by

including a new literal Bound whose �rst argument is always an IFV and whose

second argument is always an object constant. For instance,

Bound(Mode-of-Copier, Copy)

One such Bound literal is recorded for each IFV that has a value in the situation,

including those that correspond to TOP variables.4

Third, we must consider a special case that arises if one of the TOP variables

is bound to a numeric value. In this case, the learner may need to have informa-

tion about the relationship between the current value of this variable and its target

value. For instance, suppose we are learning a TOP that uses the up action to

achieve Altitude(?x). This TOP will obviously only work if the plane is currently

lower than the target altitude. The preimage must thus include a literal of the form

�(The-altitude, Target-altitude). Therefore, if an IFV representing a TOP vari-

able from the the goal of the TOP is bound to a numeric value, and some other IFV

4We could also imagine a general BoundP predicate that is true for an indexical-functional
variable i� the variable has a de�ned value in the situation. This does not appear to be very useful
for action-model learning.

114 CHAPTER 5. LEARNING IN TRAIL USING ILP

in the domain represents the current value of that goal variable, a � or � literal

is included that indicates the relation between the two IFVs. This is the only cir-

cumstance in which TRAIL includes inequalities in the indexical-functional situation

representations, as other inequalities are likely to be meaningless or irrelevant, e.g.

�(The-altitude, The-time).

Fourth, if there are any input-only literals in the domain, any instances of such

a literal provide information about the situation. Suppose an instance contains the

literal Has(Scott;Book1). The two object constants Scott and Book1 may both

be the values of several IFVs. Suppose that Scott is the value of the variables

Owner-of-Robot and Nearest-person-to-Robot and that Book1 is the value of the

variable Desired-object. Then the two literals

� Has(Owner-of-Robot, Desired-object)

� Has(Nearest-person-to-Robot, Desired-object)

both need to be added to the state description. Every possible combination of active

referents that corresponds to the arguments of the actual literal will result in a literal

in the representation. Note that the learner only creates these new literals from

input-only literals, not from any of the other literals in the domain. This distinction

is discussed further below.

Finally, note that so far we have only included two types of domain literals in

our representations: the de�ning literal for each IFV, and any input-only literals.

However, there is still much more information contained in a situation description.

Consider the literal At(Xerox1; Room101) from our earlier example. The literal

At(Copier, Location-of-Copier) is included in our description already since it is

the de�nition of the variable Location-of-Copier. However, we note that the object

Room101 is also the value of Location-of-Robot. This fact can be expressed in one

of two ways: either by including the predicates At(Copier, Location-of-Robot)

and At(Robot, Location-of-Copier) or by including a predicate indicating that

Location-of-Copier is the same as Location-of-Robot in this situation. We choose

to adopt the second approach and include special Equal predicates for each pair of

IFVs that have the same bindings in a situation. (If there are n derived IFVs that

5.4. AN INDEXICAL-FUNCTIONAL VIEW OF ILP 115

Object Variable

3 Number-of-copies-made

Article5 Object-copied

Xerox1 Copier

Robot (domain constant)

Room101 Location-of-Robot

Location-of-Copier

Copy Mode-of-Copier

Nilsson Author-of-Object-copied

1200 The-time

Large Size-of-Location-of-Robot

Size-of-Location-of-Copier

Table 5.7: Active Referents to be Used in IFV Representation

have the same binding in a situation, we would need to include at least n(n � 1)

domain predicates in order to cover all the possible substitutions of other variables

into the original de�nitional literals, while there are only n(n�1)=2 pairwise equality

statements, assuming that there is some �xed ordering on variables to avoid the need

to include both Equal(A;B) and Equal(B;A).)

5.4.4 The Example Continued

Let us return to our example from Section 5.4.2. Recall that at the end of the

indexical-functional computation process we had created the variables shown in Ta-

ble 5.7:

There are seven new variables that were introduced during the computation pro-

cess. Our representation of the instance must include the de�nitional literals for each

of these:

� At(Robot,Location-of-Robot)

� At(Copier, Location-of-Copier)

� Mode(Copier, Mode-of-Copier)

116 CHAPTER 5. LEARNING IN TRAIL USING ILP

� Author(Object-copied, Author-of-Object-copied)

� CurrentT ime(The-time)

� Size(Location-of-Robot, Size-of-Location-of-Robot)

� Size(Location-of-Copier, Size-of-Location-of-Copier)

Next, the bindings of each indexical-functional variable must be expressed using

Bound literals. This applies to both the seven created IFVs and the three that came

from the TOP variables:

� Bound(Number-of-copies-made, 3)

� Bound(Object-copied, Article5)

� Bound(Copier, Xerox1)

� Bound(Location-of-Robot,Room101)

� Bound(Location-of-Copier,Room101)

� Bound(Mode-of-Copier,Copy)

� Bound(Author-of-Object-copied,Nilsson)

� Bound(The-time,1200)

� Bound(Size-of-Location-of-Robot,Large)

� Bound(Size-of-Location-of-Copier,Large)

One of the TOP variable IFVs, Number-of-copies-made, is bound to a nu-

meric value, but there is no other IFV expressing the current value of a correspond-

ing state attribute. Therefore, there is no need to include an inequality between

Number-of-copies-made and some other IFV.

We have only one input-only literal in the situation, Has(Robot;Article5). There

is only one active referent matching each argument, so there is only one literal that

needs to be included based on the input-only literal:

5.4. AN INDEXICAL-FUNCTIONAL VIEW OF ILP 117

� Has(Robot, Object-copied)

Finally, we check to see whether any pairs of IFVs are equal in this situation.

There are two such pairs, Location-of-Robot and Location-of-Copier and the

corresponding Size-of variables. They are expressed in the following two literals:

� Equal(Location-of-Robot, Location-of-Copier)

� Equal(Size-of-Location-of-Robot, Size-of-Location-of-Copier)

This completes our indexical-functional re-representation of the state description.

All the relevant information contained in the instance is now expressed in these

indexical-functional literals.

5.4.5 Using Indexical-Functional Representations for Learn-

ing

The main advantage of using indexical-functional representations as described in

the previous two sections is that we have considerably simpli�ed the learning in-

stances. The original representation is fundamentally �rst-order, in that objects must

be reasoned about explicitly. Suppose that we were to try to represent the world

state propositionally, using propositions such as RobotAtRoom101. The precondition

for the copy operator would then include some clause such as RobotAtRoom101 ^

XeroxAtRoom101, a concept that does not generalize at all to new situations.

In the indexical-functional representation, on the other hand, the instances are

truly propositional. For instance, the two literals Has(Robot, Object-Copied) and

Equal(Location-of-Robot, Location-of-Copier) are both propositions; they are

either true or false in any situation. And they are fully general; the literalHas(Robot,

Object-Copied) has the same meaning relative to the copying TOP in every situ-

ation regardless of the binding of Object-Copied. Therefore, the relevant facts in

each situation can be described by a �nite set of boolean features, consistent across

situations.

118 CHAPTER 5. LEARNING IN TRAIL USING ILP

The representation is actually slightly more complicated than a strictly boolean

representation due to the presence of Bound literals. These can be viewed in ma-

chine learning terms as non-boolean feature inputs; the value of each IFV is either a

continuous numeric feature or a discrete non-numeric feature. Numeric features are

found in many concept learning applications, and are handled in TRAIL using methods

discussed in Section 5.5.6. The discrete non-numeric features may seem problematic

since the values of an IFV are not limited to one of a small number of possible values.

However, it is normally the case that either the value of the variable is irrelevant

(most of the time) or the variable must have one particular value, such as copy-mode

Copy. In our test domains, it is never necessary to construct complex disjunctions

over the possible values of a discrete IFV. We suspect that this is probably true of

most preimage learning problems.

As we have seen, once we have constructed the set of IFVs for a set of instances, we

can convert each of the instances to representations consisting entirely of propositions

and non-boolean Bound features. The learning problem is thus much easier, and also

more familiar as most of the existing concept learning work has focused on domains

with propositional or numeric features. The way in which TRAIL actually learns

preimages given the propositional representations is covered in the next section.

5.5 ILP Learning Strategies

5.5.1 The Generic Top-Down Learning Algorithm

As discussed in Section 5.3.2, we have elected to learn in TRAIL using a top-down

learning strategy.5 Such a strategy allows us to consider the whole dataset in order to

make intelligent decisions on how to specialize a proposed concept. TRAIL's learning

mechanism is based on the covering algorithm used in AQ (Michalski 1983) and FOIL

(Quinlan 1990). A pseudo-code sketch of the algorithm is shown in Figure 5.2.

5It is interesting to note that the IFV representation discussed in the previous section would also
be quite usable for a bottom-up learner such as GOLEM, as the pruned rlgg of two instances is
simply the intersection of the IFV representations of the instances.

5.5. ILP LEARNING STRATEGIES 119

H = F

repeat

C = T

repeat

Select a literal L and add it to C: C = C ^ L

until ClauseStoppingCriterion

Add C to H: H = H _ C

Remove all positive instances covered by C
until ConceptStoppingCriterion

Figure 5.2: The Generic Covering Algorithm

There are four questions that must be answered in implementing a top-down

covering algorithm based on the above pseudo-code:

� What is the set of literals from which L is chosen?

� What criterion is used to decide among the possible literals to add?

� What criterion is used to decide when to stop adding literals to a clause?

(ClauseStoppingCriterion)

� What criterion is used to decide when to stop adding clauses to the hypothesis?

(ConceptStoppingCriterion)

As a simple example, consider the arti�cial data set shown in Table 5.8. Suppose

we wish to learn a concept that covers only the positive instances. We are given

the three literals L1, L2, and L3 and the boolean value for each literal in each in-

stance. Our top-down learning algorithm begins with the clause T . It now applies

some literal selection criterion, searching for a literal that will make the clause cover

mostly positive examples. (The exact selection criterion is not important here; literal

selection methods will be covered further in Section 5.5.3.) Examining the possible

literals that could be added, the learner selects L3, as that literal causes the clause to

cover three positive instances and only one negative instance. L3 is thus added to the

clause. The clause does not yet satisfy the clause stopping criterion, so the learner

120 CHAPTER 5. LEARNING IN TRAIL USING ILP

searches for another literal to add. This time it selects L1, so the clause becomes

L3 ^ L1. This clause covers only positive instances, so the learner adds it to H, and

removes the two positive instances I6 and I8 covered by the clause.

Instance L1 L2 L3 Label

I1 0 0 0 +
I2 0 0 1 +
I3 0 1 0 -
I4 0 1 1 -
I5 1 0 0 -
I6 1 0 1 +
I7 1 1 0 -
I8 1 1 1 +

Table 5.8: A Simple Concept Learning Problem

The hypothesis does not yet cover all the positive instances, so the learner searches

for another clause. This time it begins with T and adds :L2, as :L2 causes the clause

to cover both remaining positive instances and only one negative instance. Finally,

it adds :L1 to the clause, as this literal excludes the last negative instance. The

second clause is now added to the hypothesis, resulting in (L1 ^ L3) _ (:L2 ^ :L1).

This hypothesis covers all of the positive instances and no negative instances, so

the concept stopping criterion is satis�ed, and the learner has produced a successful

hypothesis.

The set of literals from which L can be chosen in TRAIL follows directly from

the indexical-functional representation discussed above. Any literal that is found

in the indexical-functional representation of any positive instance is a candidate for

inclusion in the concept, as is the negation of any literal found in the representation of

some negative instance. (Actually, we might also want to include interval conditions,

which do not correspond directly to any single literal. This issue is discussed further in

Section 5.5.6.) The literal selection and stopping criteria used by TRAIL are discussed

beginning in Section 5.5.4.

5.5. ILP LEARNING STRATEGIES 121

5.5.2 Accuracy and Coverage

In evaluating the correctness of a learned concept wemake use of two distinct measures

of goodness, accuracy and coverage. Accuracy corresponds to the fraction of instances

covered by the concept that are positive. Coverage is the fraction of the positive

instances that are covered by the concept. Accuracy and coverage of the clauses

within a concept are de�ned analogously. Clearly we desire concepts that are high in

both accuracy and coverage.

Deciding which literal to add to a partially constructed clause (and in fact, de-

ciding whether to add a literal at all) is a question of trading o� accuracy against

coverage. Each literal added can exclude negative instances, and can thus potentially

increase the accuracy of the concept, but will generally also reduce the coverage of

the clause by excluding some positive instances.

It is important to note that for a covering algorithm, the considerations of accuracy

and coverage are not equivalent. If a positive instance is not covered by a clause, the

learner may later induce some other clause that does cover the instance. But if

a negative instance is covered, then it is guaranteed to be covered by the concept

as a whole, reducing the overall accuracy of the concept. Therefore, we can claim

that the accuracy of a clause is more important to a covering algorithm than the

coverage. However, it is important not to take this claim too far. In addition to

accuracy and coverage, simplicity is also important in learned preimages. Since TRAIL

will be using the preimages to do backchaining, it is important that the learned

preimages be relatively simple. Therefore, we must avoid including too many clauses

in induced concepts. As an extreme example, suppose that we included one clause

for each positive instance. Assuming there were no instances with con
icting labels,

the resulting concept would have 100% accuracy and 100% coverage. However, not

only will this concept be so complex as to be useless for planning, but it will also

generalize very poorly to new situations, a condition known as over�tting the data. It

is a well-known result in machine learning that shorter concepts tend to have better

generalization performance, in addition to simplifying the planning process.

122 CHAPTER 5. LEARNING IN TRAIL USING ILP

5.5.3 Literal Selection Criteria in FOIL and CN2

The ILP system FOIL uses a literal selection criterion known as weighted information

gain that is indirectly based a simple accuracy estimate. Let n(C) be the number of

instances covered by a concept C, and let n+(C) and n�(C) be the number of positive

and negative instances, respectively, covered by C. The informativity of a concept

refers to the amount of information needed to signal that an instance covered by the

concept is positive, and is given by

I(C) = � log2
n+(C)

n(C)

Clearly the informativity of a concept decreases as the accuracy increases; a cor-

rect concept has informativity zero. Therefore, the inverse of the informativity is a

reasonable measure of concept quality. The information gain of a literal L is given

by

IG(L) = I(C)� I(C ^ L)

Of course, the information gain metric does not take into account the coverage of

the concept at all; if L reduces the concept to covering a single, positive instance, it

will have maximal information gain. FOIL handles this problem in a rudimentary way

by simply multiplying the information gain by the number of instances covered by

the resultant concept, resulting in a formula known as Weighted Information Gain:

WIG(L) = n+(C ^ L) � (I(C)� I(C ^ L))

This heuristic does have the right general properties for literal selection, but has

the disadvantage that it is only a local measurement, and provides no way of compar-

ing two concepts. In particular, any literal that increases the accuracy even slightly

has a positive weighted information gain, so it is not possible to directly evaluate

the possibility of not adding any more literals at all. (One could of course select an

arbitrary threshold as a minimumweighted information gain needed to add a literal.)

Instead, FOIL uses a clause stopping criterion based on an encoding length restriction;

the number of bits used in a clause cannot exceed the number of bits that would be

needed to explicitly encode the labelings of all the instances remaining in the data

set. This heuristic is problematic for a number of reasons: if there are few instances

it may prevent the system from learning a correct clause, while if there are many

instances it can use the extra bits to over�t the data. Lavra�c & D�zeroski (1994) cite

5.5. ILP LEARNING STRATEGIES 123

the following example: suppose some region of a dataset has 1023 negative instances

and one positive instance. The one positive instance is most likely noise, but FOIL

will have 20 (log2 1024 + log2 1024) bits with which to build a clause covering the

instance.

The attribute-value learning system CN2 (Clark & Niblett 1989) uses a covering

algorithm essentially similar to FOIL, but does search using beam search rather than

hill climbing. Literals are added to clauses according to an accuracy estimate known

as the Laplace estimate. Before literals are added, the resulting clause is tested to

see whether it would be statistically signi�cant. This helps to avoid including clauses

with low coverage, but has no preference for very general clauses over ones that barely

exceed the signi�cance threshold. In addition, if there are few instances it may be

impossible to �nd any clauses that exceed the signi�cance threshold.

5.5.4 Strategies for Learning Preimages

In developing a learning algorithm for action-model preimages, it is important to

consider the desired form of the learned preimages. We argued above that it is

important that preimages be simple and symbolic, in order to be able to do useful

backward chaining on them. This simplicity bias corresponds to our own observations

about preimages. Both in our experimental domains and in other planning domains

found in the literature, most operator preconditions tend to be either monomials

(conjunctions of literals) or small disjunctions of monomials. Thus, our learner should

be biased toward learning such preimages.

There has been little work within the machine learning community on learning

small disjunctions of conjunctions. HILLARY (Iba, Wogulis & Langley 1988) is an

incremental algorithm that explicitly considers both simplicity and coverage in de-

veloping disjunctive concepts. HILLARY would be a promising algorithm for use in

action-model learning, but we were unaware of it at the time we were developing

TRAIL's learning algorithm. Aside from this system, most concept learning research

has focused on learning decision trees or sets of rules, which do not generally trans-

late well to action-model preimages. Shen's CDL algorithms (Shen 1990) appear to

learn small preconditions e�ectively within his LIVE system, but do not provide any

124 CHAPTER 5. LEARNING IN TRAIL USING ILP

noise handling mechanism. Covering algorithms such as FOIL produce disjunctions of

conjunctions, but the learning heuristics used in FOIL are unsatisfactory for a number

of reasons, as discussed above. Therefore, in designing TRAIL, we needed to develop

our own covering-based algorithm for learning TOP preimages.

Monomials can be learned by using a straightforward hill-climbing search with a

metric that is a simple weighted average of the coverage and accuracy of each proposed

concept. Given the notation introduced in the previous section, we can estimate the

accuracy and coverage by simply counting the number of instances covered by the

concept, as follows:

Acc(C) = n+(C)

n(C)

Cov(C) = n+(C)

n+(T)

An outline of the algorithm is shown in Figure 5.3. Note that the search metric itself,

de�ned as M(c) in the �rst line of Figure 5.3, is somewhat arbitrarily chosen, but

does embody the desired criteria discussed in the previous section. The inclusion

of coverage as well as accuracy in the metric avoids the di�culty of overvaluing

literals that make the concept cover only a small number of positive instances. It also

provides a way to compare the various potential added literals to the option of not

adding a literal at all. If none of the potential literals increases the accuracy enough

to compensate for the (possible) decrease in coverage, then the clause is complete.

This provides a natural clause stopping criterion for the search process. (Of course,

we could also apply a lookahead search with the same literal selection and stopping

criterion. We expect that this would probably improve performance.)

Learning small disjunctions requires a slightly di�erent approach. Single disjuncts

tend to be regions of the search space that have high accuracy and low but not insignif-

icant coverage, perhaps in the range of 20% { 50%. In many domains, hill-climbing

search with a metric such as Coverage + Accuracy will have di�culty �nding such

regions. However, signi�cantly increasing the weighting of the accuracy term makes it

too likely that the learner will identify regions that cover only a few instances. There-

fore, in conjunction with the monomial search described above, TRAIL's learner also

does a search for disjuncts using a slightly di�erent measure. We (rather arbitrarily)

selected n+(C) � k � n�(C) with k = 2 as the metric for the learner. The learning

5.5. ILP LEARNING STRATEGIES 125

M(c) = Acc(c) + k � Cov(c)

C = T

EXIT = F

repeat

Find literal L that maximizesM(C ^ L)
if M(C ^ L) > M(C) then

C = C ^ L

else

EXIT = T

until EXIT

return(C)

Figure 5.3: Algorithm For Learning Monomials

algorithm itself is fairly simple, as shown in Figure 5.4.

Note our use of the encoding length principle as a concept stopping criterion -

if the number of bits needed to add a disjunct that covers some of the remaining

instances is less than the number of bits needed to encode the labels of the instances

themselves, the growth of the disjunction is halted; otherwise, the procedure is called

recursively. Encoding length is also used in the same way in deciding whether to use

a monomial generated by the �rst algorithm or a disjunction generated by the second

algorithm.

We have used the algorithms described above for all of our action-model learning

work, and the combination appears to produce satisfactory results. First o�, learning

is relatively fast, important in an incremental domain. Second, it works well even for

small numbers of instances. This is essential in action-model learning, where we need

to get reasonable performance as soon as possible, without waiting for hundreds of

instances. Finally, although it is a simple solution that is unlikely to be competitive

with modern decision tree algorithms on large data sets, it appears to have good

performance in practice when applied to preimage learning. The limiting factors in

TRAIL's performance at present appear to be instance generation and domain noise,

rather than the learning algorithm. We will discuss this issue further in Chapter 6.

126 CHAPTER 5. LEARNING IN TRAIL USING ILP

M(c) = n+(c)� k � n�(c)

C = T

EXIT = F

repeat

Find literal L that maximizesM(C ^ L)
if M(C ^ L) > M(C) then

C = C ^ L

else

EXIT = T

until EXIT

E0 = instances not covered by C
if EncodingLength(C + exceptions) < EncodingLength(instances) then

C 0 = LEARN(E0)
return(C _ C 0)

else return(T)

Figure 5.4: Algorithm For Learning Disjunctions

5.5.5 Heuristics for Learning from Positive Instances

We noted in Section 4.4.5 that TRAIL's method of generating negative instances from a

teacher is dependent on an ability to learn a useful approximation to a TOP preimage

when given only positive instances. In addition, it was found during the development

of TRAIL that learning is sometimes speeded by the addition of certain probably rel-

evant literals to preimage conditions. Therefore, TRAIL's learning system sometimes

generates preimage conditions that are more speci�c than would be necessary simply

to exclude all the given negative examples.

In general, the most relevant literals for a TOP preimage are those that refer to

the TOP variables. If a condition on a TOP variable has been true in all the states

in which the TOP has succeeded, there is a good chance that the condition should

actually be in the preimage condition of the TOP. For instance, if the
grab
! Holding(?x)

TOP has only succeeded when FacingBar(?x) holds, the literal FacingBar(?x) is

likely to be an element of the preimage of the TOP. Of course, this heuristic does

not always work, so once TRAIL observes a positive in which FacingBar(?x) does not

5.5. ILP LEARNING STRATEGIES 127

hold, the literal should no longer be included by default in the preimage condition.

Thus, upon completion of the basic preimage learning algorithm discussed above,

TRAIL will attempt to specialize the preimage condition by adding literals that refer

to the TOP variables. (These literals correspond to the inner circle relations in

LIVE (Shen 1994).) However, it should only do so as long as these literals hold in

all of the positive instances that are currently covered by the preimage condition.

Therefore, TRAIL adds any literal that mentions a TOP variable and does not reduce

the coverage of the preimage.6 This mechanism produces accurate preimage estimates

more quickly, and allows TRAIL to intelligently generate a preimage that is more

speci�c than T even when given only positive instances as input.

5.5.6 Including Intervals in Preimages

Normally, TRAIL does not reason about speci�c objects in the world. It is often im-

portant whether two indexical-functional variables have equal values, but it is usually

not important what these exact values are. There are exceptions to this rule, of

course, such as the literal Bound(Mode-of-Copier, Copy) that we discussed above.

However, most of the exceptions take the form of real-valued variables for which the

actual value is important to the success of an action. This is particularly evident

in the
ight simulator domain, as it becomes important to express facts about these

variables, facts such as GreaterThan(speed; 55). Unless we are to include these facts

as speci�c propositions in the state descriptions, the learner needs to be able to induce

ranges on the values of numeric arguments of literals.

The range induction process is quite straightforward. Whenever the instance de-

scriptions include a Bound literal that binds an IFV to a numeric constant, the learn-

ing algorithmwill consider adding literals of the form IntervalBound(varname; low�

end; high � end) to the concept. The utility of adding these literals can clearly be

evaluated using the same criteria used to evaluate other literals considered during

learning. Of course, these literals greatly increase the branching factor of the search

6One could consider accepting small reductions in coverage in order to be able to exclude some
false positive instances. TRAIL does not do this, since if the preimage is overly general, plan
executions will soon generate negative instances.

128 CHAPTER 5. LEARNING IN TRAIL USING ILP

space. If a variable takes on n di�erent values in the set of positive instances, there

are n(n� 1)=2 possible interval literals that could be induced. Ideally, we would like

to have some heuristic that provides only a few likely candidate interval literals from

this set. For instance, we might simply force one endpoint of each candidate interval

to be in�nity or negative in�nity. However, at present the system simply tries all

possible intervals.

The technique of using the value of a numeric variable as an input to an attribute-

value learner can also be applied in the DINUS framework, if DINUS is given a learner

that can handle continuous features. This approach is applied to various problems in

behavioral cloning by D�zeroski, Todorovski & Urban�ci�c (1995).

5.6 Converting from Concepts to TOPs

Once a concept has been learned, the process of converting it back into a TOP

preimage is fairly straightforward. The predicate of each literal in the concept is either

a predicate in the domain or one of the arti�cial Equal, Bound, or IntervalBound

predicates. The arguments of each literal are either indexical-functional variables,

constants corresponding to the values of IFVs, or domain constants such as Robot.

The �rst step in the conversion process is to assign a variable name to each IFV.

If the IFV corresponds to a TOP variable, the TOP variable name can be used;

otherwise the learner must assign a new name to the variable.

If a new name has been assigned to a variable, the learner must insure that the

name is given a meaning within the context of the TOP. For instance, if the concept

includes some literal that mentions the IFV Location-of-Robot, and the IFV is

assigned a new variable name, say ?v17, the TOP must contain some indication of

what ?v17 means, so that when the precondition of the TOP is matched against a

situation (as would be done when executing a plan created using the TOP,) ?v17 can

be bound to the current location of the robot. In order to do this, we simply need

to include in the preimage the de�nitional literal (as mentioned at the beginning of

Section 5.4.3) for the IFV Location-of-Robot. In this case, the de�nitional literal is

At(Robot, Location-of-Robot), which would be converted to the literal At(Robot,

5.6. CONVERTING FROM CONCEPTS TO TOPS 129

?v17) and included in the preimage. This literal thus insures that ?v17 is correctly

bound whenever the preimage is matched to a situation. Since each IFV (other than

the TOP variables) has exactly one de�nitional literal, the learner can simply add all

of the appropriate de�nitional literals to the preimage and substitute in the variable

names for the IFVs.

The arti�cial literals are also relatively simple to deal with. A Bound literal

simply requires substituting the value in for the variable throughout the preimage.

For an IntervalBound literal, we can construct appropriate inequalities: the literal

IntervalBound(?x; v1; v2) produces the inequalities � (?x; v1)^ � (?x; v2). Finally,

an Equal literal merely requires the learner to choose one variable name and substitute

it in for the other.

We will now apply this process to the copying TOP which we have been exam-

ining throughout this chapter. Once the instances have been converted to indexical-

functional form as demonstrated in Section 5.4.4, the learner can generate a concept

using the created literals. Suppose the learned concept was the conjunction of the

following literals:

� Bound(Mode-of-Copier, Copy)

� Equal(Location-of-Robot, Location-of-Copier)

� Has(Robot, Object-copied)

� IntervalBound(Number-of-copies-made, 1, 20)

(Note that other literals, such as At(Robot, Location-of-Robot) would clearly also

have been true in all of the positive instances, but were not included in the learned

concept as they did not provide any discrimination between positive and negative

instances.)

Recall from Figure 5.1 that the TOP has the action copy(?obj,?x) and the post-

condition Has(Robot; copies(?n; ?obj)). The TOP variables were ?obj, ?x, and ?n,

corresponding to the IFVs Object-copied, Copier, and Number-of-copies-made,

respectively. The other IFVs that are included in the concept are assigned new vari-

able names. Mode-of-Copier is assigned to ?v1, Location-of-Robot to ?v2, and

130 CHAPTER 5. LEARNING IN TRAIL USING ILP

Location-of-Copier to ?v3. We can now convert the IFVs in the four literals found

in the concept to variables, resulting in the following literals:

� Bound(?v1; Copy)

� Equal(?v2; ?v3)

� Has(Robot; ?obj)

� IntervalBound(?n; 1; 20)

Each of the three variables ?v1, ?v2, and ?v3 needs to be de�ned, so the IFVs in

the three de�nitional literals

� Mode(Copier, Mode-of-Copier)

� At(Robot, Location-of-Robot)

� At(Copier, Location-of-Copier)

are converted as well, resulting in:

� Mode(?x; ?v1)

� At(Robot; ?v2)

� At(?x; ?v3)

Now, we remove the literal Bound(?v1; Copy) from the concept and substitute

the constant Copy for ?v1 throughout the concept. Next, we remove the literal

Equal(?v2; ?v3) and substitute ?v2 for ?v3 throughout the concept. (Since both are

new variables, it does not matter which one we choose to use as a substitute. But

note that if both arguments of an Equal predicate are TOP variables, the substitution

needs to be done throughout the entire TOP, including the action and postcondition.)

Finally, the literal IntervalBound(?n; 1; 20) is replaced with two appropriate inequal-

ities. The resulting concept is thus the conjunction of the following literals:

5.7. COMPUTATIONAL COMPLEXITY OF TRAIL'S ILP ALGORITHMS 131

� Has(Robot; ?obj)

� Mode(?x;Copy)

� At(Robot; ?v2)

� At(?x; ?v2)

� � (?n; 1)

� � (?n; 20)

5.7 Computational Complexity of TRAIL's ILP Al-

gorithms

We now brie
y examine the computational complexity of the indexical-functional

representation stage of the learning process. In the worst case, the number of IFVs

that can be introduced is exponential in the size of the state description. To see this,

suppose we have a predicate F (:input :output :output) and our state description is

the following:

F (C1; C2; C2) ^ F (C2; C3; C3) ^ F (C3; C4; C4) ^ : : :

If C1 is a domain constant in this domain, there will be 2 IFVs with value C2 (repre-

senting the two output arguments of F (C1; C2; C2)), 22 with value C3 (two for each

one with value C2), 23 with value C4, and 2n�1 with value Cn.

Are there limitations that we can place on the computation process that allow

us to state more useful bounds on the complexity? It turns out that there are. We

merely need to limit the length of the variable creation cycle. If we only do a few

cycles of the process, the number of variables created is much more manageable. This

restriction is not unreasonable, as real domains rarely contain useful IFVs that are

even as far as three steps from the set of input variables.

Let D be this maximum depth of derived IFVs. (We say a variable has depth i

if it was created on the ith cycle through the algorithm. TOP variables are of depth

132 CHAPTER 5. LEARNING IN TRAIL USING ILP

0.) Let L be the number of di�erent literals in the domain that contain at least one

output argument. Let M be the maximum arity of any literal.

Now, de�ne the number of IFVs created on the ith cycle through the algorithm

as Ni. Assuming that all the literals are determinate, each IFV potentially allows

for the creation of a new IFV for each output argument of each distinct literal in the

domain, or a possible L(M � 1) literals. Therefore, we know that:

Ni+1 < L(M � 1)Ni

Therefore, for a �xed maximum depth D, the number of derived IFVs is polynomial

in the number of TOP variables, the number of distinct literals in the domain, and

the arity of these literals.

Now, we examine the process of representing a state description using IFVs. Sup-

pose that ND IFVs have been created, as de�ned above. Following the �ve-part

process described in Section 5.4.3, each derived IFV produces one de�nitional literal

and one Bound literal describing its value in the situation. This results in at most

2ND literals. At most one inequality literal is generated for each goal variable, so at

most N0 inequality literals are included. Each pair of IFVs may potentially gener-

ate an equality literal, so as many as ND
2

2
Equal literals may be generated. Finally,

each input-only literal with M arguments can generate as many as ND
M literals. If

we consider the maximum arity of an input-only literal as a constant, the resulting

expression is still polynomial in ND.

Although the worst-case size of the IFV representations of state descriptions is

signi�cantly larger than the original representation, in practice the sizes of the rep-

resentations are quite manageable. There are at least two signi�cant reasons for this

discrepancy. First, the worst case analysis assumes that the number of IFVs produced

from each TOP variable grows exponentially with depth. In practice, this turns out

not to be the case, as each TOP variable generates only a few new IFVs describing its

properties. Second, the worst-case number of Equal literals and input-only literals

occurs only if all of the generated IFVs have identical values. In practice, it is almost

never the case that more than a few IFVs have identical values, resulting in far fewer

literals than might otherwise be generated.

As evidence for the practicality of the IFV approach in our domains, we tested the

5.7. COMPUTATIONAL COMPLEXITY OF TRAIL'S ILP ALGORITHMS 133

Number of TOP Variables Average Size

1 Variable 4.0 literals
2 Variables 10.0 literals
3 Variables 13.8 literals

Table 5.9: Average Size of State Representations Using IFVs

IFV conversion algorithm on a set of 133 states that were generated during the course

of problem solving in the delivery domain. The delivery domain was chosen because

it was the only one of the three domains that is truly relational, and thus contains

considerably more complicated state descriptions than the other two domains. Ini-

tially, the ground �rst-order state descriptions contained an average of 13.2 literals

per description. Since each of these states occurred while learning some TOP, the

IFV conversion algorithm was given as input the appropriate set of TOP variables

and the domain constant Robot. Each state description was then converted into an

IFV representation as described in Section 5.4. On average, the resulting state rep-

resentations contained only 8.5 literals. The average size of the state representations

varied considerably depending on the number of TOP variables used when producing

the representation, as shown in Table 5.9.

It may seem odd that the IFV representations are on average smaller than the

original state descriptions. This di�erence is easily explained by the fact that given our

algorithm, all literals in the IFV representation must be directly or indirectly related

either to one of the TOP variables or to one of the domain constants. For instance, in a

TOP describing the process of carrying an object, a literal describing the mode of the

copier is included in the original state description but not in the IFV representation.

The key point, in any case, is the fact that although the IFV representations may

theoretically be signi�cantly larger than the original state descriptions, in practice

they appear to be quite manageable in size.

134 CHAPTER 5. LEARNING IN TRAIL USING ILP

5.8 Concept Learning in Other Action-Model

Learners

Although no other action-model learning systems have explicitly used ILP in their

learning methods, each of the other systems did have to deal with the fact that their

state descriptions were structured instances rather than attribute-value instances.

Therefore, each of these systems used a learning algorithm which could deal in some

way with structured instances.

Shen's LIVE system (Shen 1994) uses his CDL algorithm (Shen 1990) to learn pre-

conditions of operators. The CDL algorithm operates by examining each instance

individually. If the current concept classi�es it correctly, no learning is done. Other-

wise, the algorithm �nds some di�erence between the concept and the misclassi�ed

instance and appends this di�erence to the concept description. Di�erences are found

by starting with a set of objects corresponding roughly to TRAIL's set of TOP vari-

ables, and looking for chains of literals built on these objects. This method is powerful

enough to learn concepts such as the preimage of the copy TOP introduced in Sec-

tion 5.2. However, CDL does not have any mechanism for handling noise, nor is there

any obvious way of modifying it to do so.

The learning algorithm in Gil's EXPO system (Gil 1992) also operates by a method

of di�erence-�nding. EXPO compares an observed negative instance to the most simi-

lar previously observed positive instance and computes the set of di�erences between

them. It then does experimentation in the environment to determine which di�erence

should be added to the precondition. This is another example of a form of experimen-

tation which has not been implemented in TRAIL. However, the learning mechanism

in EXPO can only add one condition at a time, and thus is unable to learn concepts

which depend on more than one literal, such as the copy preimage from Section 5.2.

It is also unable to deal with overly speci�c preconditions or noise in the e�ects of

actions.

Wang's OBSERVER system (Wang 1995b) learns preconditions by building a most

general and most speci�c representation in a manner similar to that of the version

space algorithm (Mitchell 1982). The most speci�c representation is built by taking

5.8. CONCEPT LEARNING IN OTHER ACTION-MODEL LEARNERS 135

conditions which are common to all of the observed positive instances and replacing

constants with variables. Negated conditions are produced by observing di�erences

between the learned concept and any negative instances which match it. The most

general representation is learned only from negative instances obtained during prac-

tice. Although OBSERVER can recover from mistaken generalizations made during

learning, like LIVE and EXPO it assumes that the observed instances are noise-free.

136 CHAPTER 5. LEARNING IN TRAIL USING ILP

Chapter 6

Examples and Evaluation

This thesis is not primarily an experimental thesis. Unlike more thoroughly studied

areas of machine learning such as decision tree induction, the area of autonomous

learning agents does not yet have any standardized set of performance tasks on which

to evaluate di�erent systems. There are at least two main reasons for this. First,

there as yet is no satisfying set of standardized environments in which agents can

be tested. Second, the aims of the di�erent agent learning systems are signi�cantly

di�erent, so it is di�cult to compare them directly. We discuss these issues further

in Section 6.4.

This chapter examines the performance of TRAIL in the three experimental do-

mains introduced in Section 1.2. We �rst illustrate TRAIL's problem-solving behavior

through several detailed examples of TRAIL's operation in two di�erent environments,

the Botworld construction domain and the SGI
ight simulator. Following this, we

present some quantitative results on the behavior of TRAIL in the Botworld construc-

tion domain and the o�ce delivery domain, demonstrating runs in which TRAIL begins

with no knowledge of the domain and learns to behave independently (through the

help of an external teacher). Finally, we discuss the behavior of TRAIL in the
ight

simulator domain and some of the di�culties that a�ected TRAIL's performance in

this domain.

137

138 CHAPTER 6. EXAMPLES AND EVALUATION

TR Executor

Planner

Teacher

World

Model

Calls for

TR Trees

Sample Runs

Goals

Preds.Sensors

Effectors

Help

User LearnerTOPs

Execution Records

Figure 6.1: TRAIL's Agent Architecture

6.1 The Behavior of the Overall TRAIL Architec-

ture

We begin this chapter by stepping back from the details of the TRAIL learning mech-

anism to describe the behavior of the integrated TRAIL system at a high level. For

convenience, we reproduce the diagram of TRAIL's overall architecture, �rst shown

in Section 3.5. For our purposes in this section, the important components are the

planner, the TR executor, the action-model learner, and the teacher.

Once a goal is given to TRAIL by the user, one of the following four scenarios can

occur:

� There may already be a tree in the plan library that, when executed, is su�cient

to accomplish the goal. In this case, either there were no execution failures

during the goal completion, or there were a small number of failures that could

be handled by the existing tree. Once the goal is complete, the execution record

is given to the learner, which updates its set of TOPs based on the record.

Positive instances are generated for each of the TOPs that were successfully

executed, while negative instances are generated for any action failures that

6.1. THE BEHAVIOR OF THE OVERALL TRAIL ARCHITECTURE 139

may have occurred.

� If there is no applicable tree in the plan library, the planner may produce a tree

that, when executed, is su�cient to accomplish the goal. From the perspective

of TRAIL's learning system, this case is indistinguishable from the case above.

� The planner may not have su�cient knowledge to create a tree to achieve the

goal from the current situation. (This is obviously the case the �rst time a goal

is given to TRAIL.) In this case, TRAIL calls the teacher and the learner updates

its action models from its observations of the teacher.

� The planner may produce an incorrect tree that is not su�cient to complete

the goal. In this case, the tree will fail during execution, resulting in either a

timeout failure or a series of action-e�ect failures. Once a failure is detected,

the learner is called, and uses knowledge gained from the failure to modify its

set of TOPs. This modi�ed set of TOPs will allow the planner to replan the

tree from the current situation (see Section 2.5). Once the corrected plan is

complete, execution resumes from the current state of the agent.

This process of iterated execution and replanning will be repeated until either

TRAIL creates a modi�ed tree that is su�cient to achieve the goal, or TRAIL

reaches a planning impasse at which it is unable to construct a tree that it

expects to complete the goal, and resorts to the teacher.

We can view this process as allowing TRAIL to construct successive approximations

to the correct preimages of each TOP. Suppose that the current approximation �� of

the preimage condition � of a TOP � is too general at some point during learning.

Then there is at least one state s such that s j= �� and s 6j= �. Eventually, some tree

will use � in such a state s. The TOP will fail, and TRAIL will generate a negative

instance of the preimage for � . The learner will thus use this instance to specialize

��, potentially excluding s.

Suppose on the other hand that the approximation �� is too speci�c. Then there

is at least one state s such that s j= � and s 6j= ��. Eventually, TRAIL will be called

upon to achieve a goal from such a state s that can only be achieved using � . TRAIL

140 CHAPTER 6. EXAMPLES AND EVALUATION

will be unable to generate a tree to do so, and thus will be forced to call the teacher.

The teacher's actions will provide a positive instance of � succeeding in state s, which

the learner can use to generalize �� to include s.

In this way, TRAIL uses its experience to converge on a useful set of action models.

As it sees more goals, it corrects errors in its TOP representations, and thus learns

to construct correct plans increasingly often.

6.2 An Extended Example in Botworld

We will now illustrate the overall behavior of the TRAIL architecture, through an

example that shows TRAIL learning to grab a bar in the Botworld construction domain.

This example is a typical example of TRAIL's performance in this domain, illustrating

the process of learning by observing a teacher, the use of the learned teleo-operators

in planning, the detection of plan failures, and the process of learning and plan

modi�cation that results from the plan failures. It also illustrates a number of the

di�culties that TRAIL faces in dealing with an environment where actions take varying

lengths of time and have e�ects that are not always predictable from the current world

state.

The bot's possible actions include the atomic actions grab and ungrab and the

durative actions turn, forward, and backward. TRAIL knows the names of these

actions and can execute each of them. It also has a set of percepts by which it senses

its environment, but has no further domain model. More details on the percepts and

actions in Botworld, and on the process of grabbing a bar, are found in Section 1.2.1.

We begin by placing the bot in the state shown in Figure 6.2 and telling TRAIL

to grab the bar, which the bot identi�es as Bar1. This initial state is described as

TooFar(Bar1) ^ FacingMidline(Bar1).

TRAIL currently has no valid TOPs, so it is forced to call the teacher and ask

for help. The teacher for this example is a program that runs a simple bar-grabbing

routine. In this particular task, the bot turns (left, the default direction) until it is

facing directly away from the midline, backs up to the midline, turns to face the bar,

moves forward until it is close to the bar, and then successfully executes the grab

6.2. AN EXTENDED EXAMPLE IN BOTWORLD 141

Figure 6.2: Initial State For First Botworld Task

action.

This results in TRAIL learning a set of TOPs from its observation of the teacher's

execution record. A partial list of these TOPs is shown in Table 6.1.

Action E�ect Preimage

turn ParallelT o(?x) TooFar(?x)
turn :FacingMidline(?x) FacingMidline(?x)^ TooFar(?x)
backward OnMidline(?x) ParallelT o(?x)^ TooFar(?x)
turn FacingBar(?x) OnMidline(?x) ^ TooFar(?x)
forward AtGrabbingDist(?x) FacingBar(?x)^OnMidline(?x)^

TooFar(?x)
grab Holding(?x) FacingBar(?x)^OnMidline(?x)^

AtGrabbingDist(?x)

Table 6.1: Partial List of Learned Construction TOPs

This is not a complete list of the learned operators; TRAIL also creates a number of

other TOPs such as
turn
! :ParallelT o(?x) and

forward
�! :TooFar(?x) that are included

in TRAIL's operator set but do not turn out to be useful for planning in bar-grabbing

tasks. TRAIL in fact has learned eight TOPs at this point; the six above are the only

ones that are used in subsequent tasks.

Also note that the preimages of a number of these operators are overly spe-

ci�c. One of TRAIL's learning heuristics (discussed in Section 5.5.5) is that if a TOP

achieves a postcondition F (?x), then any literals in the state description that refer

to ?x will be included in the preimage so long as they do not decrease the number

142 CHAPTER 6. EXAMPLES AND EVALUATION

Figure 6.3: Initial State For Second Botworld Task

of positive instances covered. Since TRAIL has only seen the action turn achieve

FacingBar(?x) when the bot was on the bar midline and too far from the bar,

the literals OnMidline(?x) and TooFar(?x) are included in the preimage for the
turn
! FacingBar(?x) TOP.

Now we give TRAIL another bar-grabbing task, shown in Figure 6.3. Using the

TOPs learned in the �rst run, TRAIL creates the plan shown in Figure 6.4. However,

the execution of this plan does not work as TRAIL expected. The bot turns around

to the left until ParallelT o(Bar1) holds, at which point node N1 becomes active and

TRAIL begins executing the TOP
backward
�! OnMidline(?x). However, the bot at this

point is facing the midline, so it continues to back up until TRAIL detects a time-

out failure on this TOP. This failure produces a negative instance ParallelT o(?x)^

TooFar(?x) ^ FacingMidline(?x). Since TRAIL had earlier observed the positive

instance ParallelT o(?x) ^ TooFar(?x), it changes the preimage for the TOP to

ParallelT o(?x)^ TooFar(?x) ^ :FacingMidline(?x).

Given this updated preimage, TRAIL no longer expects node N1 to execute suc-

cessfully, as the preimage condition for the
backward
�! OnMidline(?x) TOP does not

hold. Therefore, the planner revises the plan by changing the condition on node

N1 to include the literal :FacingMidline(?x). Since this new condition does not

hold in the current situation, the planner is forced to extend the plan using the
turn
! :FacingMidline(?x) TOP to achieve the condition on N1, resulting in the mod-

i�ed plan shown in Figure 6.5.

6.2. AN EXTENDED EXAMPLE IN BOTWORLD 143

OnMidline(Bar1)
TooFar(Bar1)

N 1

Holding(Bar1)

FacingBar(Bar1)
OnMidline(Bar1)

OnMidline(Bar1)
FacingBar(Bar1)

TooFar(Bar1)

TooFar(Bar1)

TooFar(Bar1)
ParallelTo(Bar1)

turn

turn

forward

grab

AtGrabbingDist(Bar1)

backward

Figure 6.4: An Initial Plan For Bar-Grabbing

OnMidline(Bar1)
TooFar(Bar1)

N 1

Holding(Bar1)

FacingBar(Bar1)
OnMidline(Bar1)

OnMidline(Bar1)
FacingBar(Bar1)

TooFar(Bar1)

TooFar(Bar1)

turn

forward

grab

AtGrabbingDist(Bar1)

ParallelTo(Bar1)

turn

FacingMidline(Bar1)
ParallelTo(Bar1)

TooFar(Bar1)

backward

(FacingMidline(Bar1))

Figure 6.5: Modi�ed Plan For Bar-Grabbing

144 CHAPTER 6. EXAMPLES AND EVALUATION

However, this plan does not work either. The bottom node in the plan is acti-

vated, and the bot begins turning, which soon results in the condition ParallelT o(?x)

becoming false. This is an activation failure of the second type discussed in Sec-

tion 4.4.2, in which the maintenance condition of the node has become false. There-

fore, ParallelT o(?x) is added as a delete list element of the
turn
! :FacingMidline(?x)

TOP. Since the delete list element initially has a probability of 1, this TOP can not

be used to achieve :(FacingMidline(Bar1))^ParallelT o(Bar1). The alternative of

�rst achieving :(FacingMidline(Bar1)) and then using the TOP
turn
! ParallelT o(?x)

cannot be planned either, as TRAIL has at present included :(FacingMidline(?x))

in the delete list of the
turn
! ParallelT o(?x) TOP.1

At this point, the planner cannot revise the plan to cover the current situation, so

TRAIL is forced to call the teacher in order to complete the goal. The teacher does so,

and TRAIL once again learns from its observations. In the process, the teacher ends

up backing up to be on the midline, producing another positive instance of the TOP
backward
�! OnMidline(?x). Unfortunately, this instance takes much longer than the �rst

positive instance, which raises the mean completion time of the TOP. As we saw in

Section 4.4.3, TRAIL has a heuristic that causes it to discard timeout failures for which

the timeout interval is shorter than the current average execution time of the TOP.

(This heuristic allows TRAIL to discard false negative instances that were collected

early in the learning process.) Thus, after the teacher has achieved OnMidline(?x),

TRAIL observes that the time taken by the earlier timeout instance is considerably less

than the new timeout period, and thus discards the negative instance. When the TOP

preimages are recomputed at the end of the run, the learner resets the preimage of

the
backward
�! OnMidline(?x) TOP, for the moment, to ParallelT o(?x)^ TooFar(?x).

Since there is no currently active plan, TRAIL's planner does not need to do any

updating.2

1TRAIL will eventually learn that achieving ParallelT o(?x) by turning deletes the literal
:(FacingMidline(?x)) only about 50% of the time.

2If the plan from Figure 6.5 were stored in a plan library, it would need to be modi�ed. Plan
caching in the plan library is not used in this example.

6.2. AN EXTENDED EXAMPLE IN BOTWORLD 145

Figure 6.6: Initial State For Fourth Botworld Task

For our third run, we restart the bot in a state similar to the state shown in Fig-

ure 6.2 from the �rst run. The planner constructs the same plan shown in Figure 6.4.

This run is completely straightforward, as the plan succeeds with no TOP failures.

Now, we try starting the bot in the state shown in Figure 6.6. Again, the planner

constructs the same plan, but this time, as in the second run, the bot turns until it

is parallel to the bar and facing the bar midline, at which point it begins backing up.

Again, a timeout failure is detected for the
backward
�! OnMidline(?x) TOP, and as be-

fore, the preimage is revised to ParallelT o(?x)^TooFar(?x)^:FacingMidline(?x).

At this point, the planner does not know how to revise the plan, so the teacher

is called. But this time, the bot is already parallel to the bar, so the teacher simply

moves the bot forward until it reaches the midline. Thus, TRAIL learns the new

TOP
forward
�! OnMidline(?x) with preimage ParallelT o(?x) ^ FacingMidline(?x) ^

TooFar(?x).

For the �fth run, we try something di�erent by putting the bot very close to the

bar, as shown in Figure 6.7. The condition TooFar(Bar1) no longer holds in the

initial state. However, almost every TOP learned so far has included TooFar(?x) in

its precondition, so the planner is unable to produce a plan for this situation.

TRAIL again calls the teacher, which successfully grabs the bar by turning so it is

parallel to the bar, moving forward until it is on the midline, turning to face the bar,

and executing backward until it is at the correct distance. (This sequence actually

has to be repeated several times, as the FacingBar predicate is not very precise at

146 CHAPTER 6. EXAMPLES AND EVALUATION

Figure 6.7: Initial State For Fifth Botworld task

short distances. Therefore, the bot may not be facing the bar exactly, and backing up

sometimes causes OnMidline to become false. TRAIL is quite capable of dealing with

such inconsistency.3) From this training run, TRAIL learns a new TOP for the ac-

tion
backward
�! AtGrabbingDist(?x), with preimage FacingBar(?x)^OnMidline(?x)^

:FacingMidline(?x). (The :FacingMidline(?x) literal is essentially random noise

due to the action failures mentioned above.) Meanwhile, new positive instances are

generated for a number of other TOPs, allowing the preimages of these TOPs to

be generalized. In particular, the literal TooFar(?x) is removed from the preimages

of the TOPs
forward
�! OnMidline(?x),

turn
! ParallelT o(?x), and

turn
! FacingBar(?x), as

well as a number of other TOPs.

Finally, we position the bot once again in the same position as in the fourth

run, as shown in Figure 6.6. Now, the planner comes up with the somewhat more

complex plan shown in Figure 6.8. (Note that several of the turn nodes in the tree are

annotated with probabilities, due to the possible side e�ects of the turn operations.)

Execution of this plan proceeds as normal until the bot is on the bar midline and

facing the bar. At this point, the top nodes in both branches of the tree are active.

The arbitrary tie-breaking rule used in TRAIL is to choose the rightmost of equiva-

lent nodes, so the bot begins backing up hoping to achieve AtGrabbingDist(Bar1).

3Again, while we could easily change the FacingBar predicate to make it more reliable, we
continue to use the predicate as it was originally de�ned. Real environments may well have predicates
that are not completely accurate.

6.2. AN EXTENDED EXAMPLE IN BOTWORLD 147

Holding(Bar1)

FacingBar(Bar1)
OnMidline(Bar1)

grab

AtGrabbingDist(Bar1)

forward

OnMidline(Bar1)

turn

forward

FacingMidline(Bar1)

turn

turn

OnMidline(Bar1)
FacingMidline(Bar1)

FacingBar(Bar1)

ParallelTo(Bar1)
FacingMidline(Bar1)

OnMidline(Bar1)
FacingMidline(Bar1)

FacingBar(Bar1)

(0.43)

(0.25)

OnMidline(Bar1)
FacingBar(Bar1)

TooFar(Bar1)

TooFar(Bar1)

forward

turn

ParallelTo(Bar1)

turn

TooFar(Bar1)

FacingMidline(Bar1)

OnMidline(Bar1)
TooFar(Bar1)

FacingMidline(Bar1)

(0.43)

backward

(FacingMidline(Bar1))

Figure 6.8: A More Complex Bar-Grabbing Plan

Naturally, TRAIL detects a timeout failure fairly quickly on the recently learned
backward
�! AtGrabbingDist(?x) TOP, causing the learner to generate a new negative

instance and add the condition :(TooFar(?x)) to the TOP preimage. Now, TRAIL

calls the planner with the new set of TOPs to revise the plan. The planner cannot

�nd any way to make the right branch work in the current situation, so the branch

is pruned, and the plan is left as shown in Figure 6.9. This plan now succeeds.

At this point, TRAIL has learned much of the information it needs in order to grab

a bar. It still needs to make several modi�cations to its TOPs, however, in order to be

able to produce correct plans. For instance, at some point it will learn that the TOP
turn
! ParallelT o(?x) does not always delete the condition :FacingMidline(?x), and

it will also learn that the TOP
forward
�! AtGrabbingDist(?x) is not always reliable (due

to imprecision in the set of Botworld predicates.) A summary of the performance of

TRAIL over a long series of bar-grabbing tasks is given in Section 6.5.

148 CHAPTER 6. EXAMPLES AND EVALUATION

Holding(Bar1)

FacingBar(Bar1)
OnMidline(Bar1)

OnMidline(Bar1)
FacingBar(Bar1)

TooFar(Bar1)

TooFar(Bar1)

forward

turn

forward

grab

AtGrabbingDist(Bar1)

ParallelTo(Bar1)

turn

TooFar(Bar1)

FacingMidline(Bar1)

OnMidline(Bar1)
TooFar(Bar1)

FacingMidline(Bar1)

(0.50)

Figure 6.9: A Simpli�ed Version of the Bar-Grabbing Plan

6.3 An Extended Example in the Flight Simula-

tor

In this section, we will observe the performance of TRAIL in the
ight control of

a Cessna aircraft in the Silicon Graphics Inc. Flight Simulator.4 As we discussed

when we introduced the domain in Section 1.2.3, the
ight simulation domain is

considerably more di�cult to learn from than the Botworld domain. As a result, this

section only examines a small set of fairly simple
ight tasks. Nevertheless, these

examples illustrate TRAIL's mechanism for learning in continuous domains, a series

of plan failures and replanning episodes, and the interaction between learning and

continuing plan execution. We will return to the high-level issues raised by TRAIL's

performance in the
ight simulator domain in Section 6.7.

4Again, we gratefully acknowledge the help of Seth Rogers of the University of Michigan in
providing code and assistance with the simulator interface.

6.3. AN EXTENDED EXAMPLE IN THE FLIGHT SIMULATOR 149

6.3.1 Learning to Take O�

TRAIL's �rst task is to learn to get the plane o� the ground. We express this goal

to TRAIL by simply asking it to achieve a particular altitude. In this case, the goal

we give it is Altitude(150), which is converted by our interface into the interval goal

Altitude([125::175]) (The interval is necessary since the altitude sensor might never

read exactly 150.)

In the �rst test run, naturally the agent cannot make a plan to achieve the goal, so

it calls on the teacher. The teacher takes o� using a simple hand-coded
ight control

routine that successfully gets the plane o� the ground and to 150 feet. This
ight

control program increases the throttle to 75%, waits until the plane's on-ground speed

reaches 60 knots, then begins controlling the stick through the up PID controller. (As

discussed in Section 1.2.3, most of TRAIL's
ight actions are calls to PID controllers.

These calls are durative actions that attempt to keep the climb rate of the aircraft

at a particular value.) This continues until the plane reaches approximately 100 feet,

at which point control is given to the up-slow controller. (The teacher uses up-slow

to complete any climb since it makes it easier to level the plane o� at a particular

altitude. This is a case where Fuzzy TR Trees (see Section 7.2) would make the
ying

task considerably simpler.)

From this test run, TRAIL learns the set of TOPs shown in Table 6.2.

Action E�ect Preimage

inc-throttle Throttle(?x) Bound(?x; 75)
wait Speed(?x) Bound(?x; 60)
up Speed(?x) Bound(?x; 65)
up ClimbRate(?x) IntervalBound(?x; 1; 6)
up Altitude(?x) Bound(?x; 114)
up :OnGround T

up-slow ClimbRate(?x) Bound(?x; 3)
up-slow Altitude(?x) Bound(?x; 144)

Table 6.2: Learned TOPs in the Flight Simulator

Note that, except for the Bound constraints on the goal variables, the preimages in

this example are all very general. In the bar-grabbing example in the previous section,

150 CHAPTER 6. EXAMPLES AND EVALUATION

the bar served as a target object, and literals relating to the target bar were included

in the preimage by default. In contrast, in this example there is no target object,

so TRAIL does not have any literals that it can include by default. However, since

each of the TOPs (except for
up
!:OnGround) involves setting a numerical parameter,

the binding of each goal variable is included using a Bound literal. Also, during this

run, the up action set the value of ClimbRate to a number of di�erent values, so

the binding on the TOP variable ?x for the
up
!ClimbRate(?x) TOP is actually the

interval [1..6].

Once learning is complete, we get the plane back to the initial state by giving

TRAIL the goal OnGround^Speed([�5::5]). The process of learning to land in TRAIL

is described in detail in Section 6.3.2.

Now, with the plane at a stop on the ground, we again give TRAIL the goal

Altitude([125::175]). TRAIL's initial plan is as shown in Figure 6.10.

N 1

Altitude[125..175]

up-slow

T

Figure 6.10: Initial Plan For Taking O�

Obviously TRAIL has overgeneralized the preimage of the TOP that uses up-slow

to achieve Altitude(?x). The up-slow PID controller controls the stick to set the

climb rate to approximately 300 feet per minute, but it clearly can only do this if

the plane is in the air, or on the ground and moving su�ciently fast to take o�.

But TRAIL begins executing the plan shown above in a state in which the plane is

stopped and on the ground. Thus, the up-slow action has no e�ect, so TRAIL detects

a timeout for the TOP
up�slow
�! Altitude(?x) and generates a negative instance for the

learner. The learner now has several learning instances, which look something like

the following:

6.3. AN EXTENDED EXAMPLE IN THE FLIGHT SIMULATOR 151

N 1

up-slow

inc-throttle

T

Throttle[75]

Altitude[125..175]

Figure 6.11: Revised Plan For Taking O�

+ Altitude(100) ^ Speed(66) ^ Throttle(75)

+ Altitude(105) ^ Speed(67) ^ Throttle(75)

: : :

+ Altitude(130) ^ Speed(69) ^ Throttle(75)

� OnGround ^ Altitude(0)^ Speed(0) ^ Throttle(0)

TRAIL's ILP learner then revises the preimage for the TOP, selecting Throttle(75)^

Bound(?x; 141) from several equally plausible candidates. Thus, the condition on

node N1 in Figure 6.10 is changed from T to Throttle(75). Since Throttle(75) does

not hold in the current state, TRAIL's planner extends the tree as shown in Figure 6.11.

The inc-throttle command soon resets the throttle to 75, and now TRAIL begins

to apply up-slow once again in hopes of increasing the altitude. However, at this

point something odd occurs. Recall that the teacher did not apply the up-slow action

until the plane was already 100 feet above the ground. The actual time during which

up-slow was being applied was relatively short. Therefore, TRAIL detects a timeout

failure in the
up�slow
�! Altitude(?x) TOP before the aircraft has even left the ground.

Thus, TRAIL now has the following instances for the TOP:

152 CHAPTER 6. EXAMPLES AND EVALUATION

N 1

up

up-slow

Altitude[125..175]

Speed[65..69]

T

Figure 6.12: Third Plan For Taking O�

+ Altitude(100) ^ Speed(66) ^ Throttle(75)

+ Altitude(105) ^ Speed(67) ^ Throttle(75)

: : :

+ Altitude(130) ^ Speed(69) ^ Throttle(75)

� OnGround ^ Altitude(0)^ Speed(0) ^ Throttle(0)

� OnGround ^ Altitude(0)^ Speed(5) ^ Throttle(75)

� OnGround ^ Altitude(0)^ Speed(10) ^ Throttle(75)

: : :

TRAIL's ILP learner again revises the preimage, this time to Speed([65::69]) ^

Bound(?x; 141). Thus, the condition on node N1 is changed to Speed([65::69]). Now,

TRAIL observed previously that the aircraft speed increased to 65 as the teacher was

taking o�. Therefore, it believes that the up action was responsible for the increase

in speed, and constructs the revised plan shown in Figure 6.12.

Clearly, this is an incorrect plan, but in this case, due to unexpected interactions

between replanning and the ongoing execution of the tree, it happens to work. Recall

that earlier in this training run, TRAIL had set the throttle to 75. Therefore, at

the point at which TRAIL begins executing the plan from Figure 6.12, the aircraft

is already moving and building up speed. Eventually, the aircraft reaches a speed

6.3. AN EXTENDED EXAMPLE IN THE FLIGHT SIMULATOR 153

of 65 knots, takes o�, and climbs to over 125 feet.5 Thus, the interactions between

the learning process, the replanning mechanism, and the continuing execution of the

teleo-reactive plan have produced a result that di�ers from what would have been

produced by either the learning or the execution alone. In this case, it has allowed

TRAIL to take o� without resorting to the teacher, despite the fact that the plan

shown in Figure 6.12 is obviously incorrect. In general, the interaction between

learning, replanning, and execution can be very complex, and is beyond the scope of

this thesis to analyze. This interaction is also another reason why it is di�cult to

evaluate the performance of the individual components of TRAIL, as we will discuss

in Section 6.4.

Meanwhile, TRAIL has still not learned a correct plan for taking o�. Thus, once

TRAIL has landed and stopped (as described in the next section), when we give it

the goal for a third time, it constructs the same plan as was shown in Figure 6.12.

Now, the lowest node in the tree is the active node, and the action up is applied.

Once again, TRAIL sits on the runway, hoping that the up controller will cause the

plane to accelerate to 65 knots. Once this does not happen, TRAIL detects a timeout

failure, and revises the preimage for the TOP
up
!Speed(?x) to be Bound(?x; 65) ^

Throttle(75). Note that since the PID controller does nothing while the plane is still

too slow to take o�, the up action is simply being used as a substitute for the wait

action. In any case, the revised preimage results in the plan shown in Figure 6.13.

This plan causes TRAIL to increase the throttle to 75%, accelerate by applying the

up controller until the plane actually takes o�, and then apply the up-slow controller

once the speed reaches 65 knots. The aircraft quickly reaches an altitude of over 125

feet and the goal is complete.

It would be nice if this were the end of the story, and that TRAIL had now com-

pletely learned how to take o�. However, this success has a rather unexpected e�ect

on one of the TOPs, namely
up�slow
! Altitude(?x). Recall that earlier, the TOP was

only executed for a short time before the goal became true. In this case, up-slow

5The PID controller is intelligent enough that even though it was called too early, it did not pull
the stick all the way back while the plane was on the runway { this would have caused the plane to
stall shortly after takeo�.

154 CHAPTER 6. EXAMPLES AND EVALUATION

N 1

T

Throttle[75]

Speed[65..69]

Altitude[125..175]

up-slow

up

inc-throttle

Figure 6.13: Successful Plan For Taking O�

was applied somewhat earlier, shortly after the plane left the ground. The length of

the action was not long enough to cause a timeout failure, but TRAIL now has an

execution success that is signi�cantly longer than the earlier observed successes. As

we saw in Section 6.2, this success causes TRAIL to lengthen the average completion

time for the TOP, and thus prune the earlier negative example. Therefore, at the end

of the run, the preimage for the TOP
up�slow
! Altitude(?x) is reset to T .

The eventual e�ect of this overgeneralization is that the next time TRAIL takes

o�, it goes through what is essentially a repeat of the experience it had on its sec-

ond run. However, this time the timeout failure is signi�cantly longer, and will be

retained as a negative instance. In this way, the preimage for the TOP is stabilized

as Speed([65::69]).

The training described above is a fairly typical example of the learning behavior

of TRAIL in the
ight simulator domain. In most of the test runs we have done, TRAIL

learns a plan similar to that in Figure 6.13 within four or �ve takeo�s. The condition

on node N1 varies somewhat from run to run, often including conditions on the climb

rate or altitude instead of the speed. However, the overall e�ect of the plan is the

same.

6.3. AN EXTENDED EXAMPLE IN THE FLIGHT SIMULATOR 155

Unfortunately, in rare cases, the interaction between TRAIL's learning system and

the simulator causes unexpected behavior to occur. Consider the following rather

involved example. In one run, while landing the aircraft after a successful take-

o�, TRAIL observed that the altitude became 150 while the teacher was decreasing

the throttle in preparation for landing. From this observation, TRAIL developed a

TOP for
dec�throttle
�! Altitude(?x). After a futile attempt to use this TOP for take-

o�, TRAIL then tried using the previously learned TOP
inc�throttle
�! Altitude(?x) to

achieve Throttle(75) as was shown in Figure 6.11. Unfortunately, the dec-throttle

operator had already set the throttle to a very negative value, so the inc-throttle

action (normally very consistent) timed out before achieving Throttle(75). Thus, the

preimage for
inc�throttle
�! Altitude(?x) was reset to Speed([10::15]). This TOP created

a number of obvious planning problems, and over the course of several plan revisions

and teacher calls, several activation failure negative instances of the TOP were also

generated. Thus, the TOP had a number of false negative instances associated with

it, which proved to be extremely di�cult for the learner to deal with. Even after 10

further training episodes, TRAIL was unable to learn to take o� correctly until it was

restarted with no domain knowledge.

Learning failures such as the one described in the previous paragraph occurred

during approximately 10-20% of TRAIL's learning runs, almost always due to some

TOP that was learned during landing. Thus, if we had turned o� all learning behavior

during the landing runs that separated each takeo�, the behavior of TRAILmight have

been signi�cantly improved. However, turning o� the learning mechanism during

parts of the training requires some rather arbitrary intervention by a human observer,

and is clearly not in keeping with the spirit of a multi-domain autonomous learning

agent.

6.3.2 Learning to Land

In general, the problem of landing an airplane is considerably more di�cult than the

problem of taking o�. This is due to the fact that the pilot must coordinate the xy

navigation of the plane with the descent such that the plane reaches altitude zero at

the same time it arrives at the runway. In addition, the pilot must make sure that

156 CHAPTER 6. EXAMPLES AND EVALUATION

N 1

N 2

down-slow stop

stop down-slow

OnGround Speed[-5..5]

TT

OnGround Speed[-5..5]

Figure 6.14: Initial Plan For Landing

the plane is not descending too fast, traveling too fast, or at too much of an angle to

the ground. In an initial attempt to get TRAIL to land successfully, we simpli�ed the

problem considerably by extending the runway inde�nitely from the starto� point.

Since the takeo� examples discussed in the previous section did not cause the plane

to change its direction of
ight, no navigation is required in order to land the plane.

We express the goal of landing as a conjunction of two literals, OnGround and

Speed([�5::5]), as we want the airplane to be (approximately) stopped as well as on

the ground. When this task is initially given to TRAIL, it naturally calls the teacher,

as it has no TOPs that are useful in planning the task. The teacher's landing process

is fairly simple - after it resets the
aps and throttle, it uses the down PID controller

to get the plane down to 50 feet, then uses the down-slow controller until the plane

is on the ground. At this point, it uses another durative action called stop that turns

o� the throttle and puts on the brakes. The stop action is executed until the speed

drops below 5 knots, and the goal is complete.

The two key TOPs that TRAIL learns from these observations of the teacher are
down�slow
�! OnGround and

stop
! Speed(?x) where ?x is bound to the value 5. The second

time TRAIL is told to land the plane, it uses these TOPs to construct the (rather

amusing) plan shown in Figure 6.14.

Note that there is no information about either the throttle setting or the
aps

6.3. AN EXTENDED EXAMPLE IN THE FLIGHT SIMULATOR 157

in this plan, as TRAIL does not initially know that these values are relevant to the

landing process. And in fact, for this simple task of landing the Cessna from low

altitudes while
ying straight, they are not terribly relevant. The Cessna's
ight is

su�ciently robust (at least in the SGI simulator) that it can land almost regardless

of the
aps and throttle settings, as we shall soon see.

The truly remarkable thing about the plan in Figure 6.14 is that it actually works

most of the time! Initially, the default node selection mechanism chooses node N1

as the active node and begins executing the stop action. Thus, TRAIL turns o�

the throttle completely, and begins applying the brakes. The brakes have no e�ect

while the airplane is in the air, of course, but the closed throttle causes the plane

to gradually lose speed and altitude, generally reaching a stable point at around 40

knots and an altitude loss of 480 fpm. The dynamics of the Cessna are su�ciently

stable that the plane neither goes into an uncontrolled dive nor stalls, even with

the throttle turned o�. Thus, the plane glides safely to the ground, where node N2

becomes active, and the stop action continues until the plane comes to a stop.

However, there are rare occasions when the plan does fail, usually involving cases

where the plane was climbing or descending steeply when execution began. So even-

tually, TRAIL will begin executing the plan and the stop action will cause the plane

to stall before reaching the ground, usually resulting in a crash. TRAIL's instance

generation mechanism will thus generate a negative instance for the
stop
! Speed(?x)

TOP. TRAIL's learner then changes the preimage for this TOP to OnGround. Once

this is done, the right branch of the plan in Figure 6.14 no longer works and is pruned,

leaving TRAIL with a generally successful landing plan.

6.3.3 Learning Level Flight

We have also tested TRAIL on the task of achieving level
ight starting from the

ground. For these experiments, we de�ned \level
ight" as achieving a particu-

lar altitude with a climb rate of approximately zero. This goal is represented as

Altitude([125::175])^ ClimbRate([�1::1]). (Of course, this instantaneous goal is not

equivalent to achieving a state of stable level
ight; we will return to this issue in

Section 6.7.)

158 CHAPTER 6. EXAMPLES AND EVALUATION

The two subgoals of the conjunction Altitude([125::175]) ^ ClimbRate([�1::1])

could conceivable be achieved in either order. However, TRAIL quickly learns that

changing the value of Altitude using the up or up-slow action has the side e�ect of

changing ClimbRate. Therefore, it learns that it must achieve Altitude([125::175])

and then achieve ClimbRate([�1::1]).

The process of learning to achieve the �rst subgoal, Altitude([125::175]), is essen-

tially identical to the learning process described in Section 6.3.1. However, the process

of learning to achieve the second subgoal, ClimbRate([�1::1]), is more complicated.

When the teacher is achieving the goal, the sequence of actions it uses to level o� is:

decrease the throttle to 50%, lower the
aps to 0, and apply the level PID controller.

This sequence of actions is necessary to allow for stable
ight, but the climb rate usu-

ally becomes 0 while the teacher is lowering the throttle or the
aps. Therefore TRAIL

learns TOPs such as
dec�throttle
�! ClimbRate(?x) and

dec�flaps
�! ClimbRate(?x), rather

than the more accurate TOP
level
�!ClimbRate(?x). When applied during plan execu-

tion, these TOPs usually work, but they do not always lead to very robust plans. A

typical successful plan learned during training is shown in Figure 6.15.

However, the task of learning to achieve level
ight is signi�cantly more di�-

cult than simply learning to take o� or to land. If the training examples and plan

executions go smoothly, TRAIL quickly learns a reasonable plan such as the one in

Figure 6.15. However, if anything goes wrong, the interactions between variables

such as the altitude and the climb rate make it di�cult for TRAIL to learn correct

models of the actions. Thus, in many training runs, TRAIL has signi�cant di�culty in

learning a dependable plan for achieving level
ight. The reasons for these di�culties

are analyzed in much more detail in Section 6.7.

6.4 Evaluation Metrics for Autonomous Learning

Systems

How can we evaluate the performance of TRAIL? Of course, the learning algorithm

could be tested against a set of standard datasets as is commonly done in the concept

6.4. EVALUATION METRICS FOR AUTONOMOUS LEARNING SYSTEMS 159

Altitude[125..175]

T

inc-throttle

Altitude[125..175]

T

inc-throttle

Altitude[125..175]

T

inc-throttle

Altitude[125..175] ClimbRate[-1..1]

up-slow

Throttle[75]

Altitude[113..133]

up

up-slow

Throttle[75]

Altitude[113..133]

up

up-slow

Throttle[75]

Altitude[113..133]

up

level dec-flaps dec-throttle

Figure 6.15: An Initial Plan For Level Flight

learning community (Murphy & Aha 1994), and more recently has begun to be done

in the area of Inductive Logic Programming (Kazakov, Popelinsky & Stepankova

1996).

However, this type of testing would be misleading in at least two respects. First,

the learning problems contained in the standardized databases may not be at all simi-

lar to the learning problems faced by TRAIL in computing action preimages. Accurate

performance on external datasets does not necessarily imply that useful action models

will be created. This is particularly true if the datasets used are small arti�cial ones,

as have been used to demonstrate many ILP algorithms.

Secondly, since TRAIL is an integrated learning system, there is much more to it

than the concept learning algorithm. Even if the concept learner is highly e�ective,

we still need some way to evaluate the other components of the system - instance

generation, experimentation, planning, and teleo-reactive execution. Furthermore, as

we saw in Section 6.3.1, these components can interact in complicated and unexpected

ways. Fortunately, there is a reasonable measure that can be used to test all of the

160 CHAPTER 6. EXAMPLES AND EVALUATION

components of TRAIL at once.

6.4.1 An Evaluation Metric for TRAIL

Recall that the objective of TRAIL is to learn to achieve goals autonomously in its

environment, and that in order to do so, TRAIL is allowed to call upon a teacher during

instruction. Therefore, we can consider that TRAIL has been successful if its learned

action models allow it to complete goals without resorting to the teacher.6 Suppose

TRAIL is given a series of goals, drawn from some �xed underlying distribution. De�ne

Pn as the probability that it will be able to solve the nth goal in the sequence without

resorting to the teacher, given that it has solved the �rst n-1 goals (using the teacher

when necessary.) Clearly, if the agent begins with no initial knowledge, P1 = 0. If

the agent is learning, this Pn should increase with n. And ideally, we would like Pn to

approach 1 as n increases, thus showing that TRAIL has become independent of the

teacher.

Our metric for evaluating TRAIL is based on this probability. In each run of the

system, we start it out with no knowledge of the action models that describe the

domain. We then give it a series of M goals G1 : : :GM drawn from some distribution.

On each goal, TRAIL uses its planning, learning, and execution mechanisms, calling

the teacher if it reaches a planning impasse. (Of course, on the �rst goal it must call

the teacher, as it has no domain knowledge.) We then simply record whether TRAIL

calls the teacher on each goal. De�ne Wi as 1 if TRAIL managed to complete goal Gi

independently, and 0 otherwise.

Now, suppose we repeat K runs of the system as described above. In order to

estimate Pn, we simply need to count the percentage of the time over the K runs

where TRAIL succeeded independently on the nth goal:

Pn �

P
KrunsWn

K

(In each of the K cases, the learner has successfully completed n-1 goals, and it

6Since we are primarily interested in measuringTRAIL's learning behavior, TRAIL's plan caching
is turned o� for these experiments.

6.4. EVALUATION METRICS FOR AUTONOMOUS LEARNING SYSTEMS 161

completes the nth one independently
P
Wn times.)

6.4.2 Choosing Domains for Evaluation

Once we have come up with a suitable evaluation metric, it still remains to choose

an appropriate domain in which to use the metric to evaluate the system. Although

a few testbeds for autonomous agents have been proposed, such as the Tileworld

domain (Pollack & Ringuette 1990), there is not yet any widespread agreement on

a standard domain in which to evaluate autonomous systems. First, the goals and

assumptions of various autonomous systems di�er, making it di�cult to construct

benchmarks on which to measure them. For example, it is di�cult to compare a

reinforcement learning system with, say, an autonomous map-learning robot. Second,

there is an ongoing debate within the agents community over the relative merits of

physical and simulated domains - physical domains such as mobile robots present

formidable practical di�culties for experimentation, while it is often argued that

simulated domains are \too easy" and remove most of the complexities of the real

world.7 Finally, the problems in any particular domain can often be solved more

simply by a special-purpose program than by a general-purpose learning and planning

agent. In order to show that our agent is useful, we must be able to evaluate it over

several domains. In particular, we would like to show that a single agent, once trained,

will be able to achieve goals successfully in multiple domains. (Several proposed test

domains, as well as the more general issues relating to the selection of domains for

evaluating agent architectures, are discussed in much greater detail in Hanks, Pollack

& Cohen (1993).)

In this thesis, however, we are not really attempting to compare the performance

of TRAIL with other agent architectures, as there do not seem to be any other archi-

tectures with which it can be directly compared. Instead, we are simply attempting

7Our position on this issue is that from a practical point of view, simulated domains will be
necessary for doing any systematic agent experiments, and that the results from simulated domains
can give us interesting and useful information about our agents, as long as we do not claim that
these results will transfer directly to a physical system. We also note that a third possibility is to
make use of domains such as virtual reality and the internet, in which the simulation itself is the
real environment.

162 CHAPTER 6. EXAMPLES AND EVALUATION

20 30 40

75%

50 6010

50%

25%

100%

Figure 6.16: Mean Success Rate in the Construction Domain as a Function of the
Number of Tasks Completed

to show that the TRAIL approach can be successful in a variety of domains. For that

reason, we have implemented TRAIL in three fairly di�erent domains: the Botworld

construction domain, the o�ce delivery domain, and the
ight simulator. In the re-

mainder of this chapter, we present a more systematic analysis of the performance

of TRAIL in each of these domains. Section 1.2 covers each of the domains in more

detail and discusses the di�erences among them from the perspective of action-model

learning.

6.5 Performance in the Botworld Construction

Domain

The �rst domain on which TRAIL is tested is the Botworld construction domain. Each

task in these experiments is simply to grab a bar from a randomly selected starting

position. As we saw in Section 6.2, the exact actions needed to grab the bar vary

depending on the orientation of the bar relative to the bot, and on whether the bot

is initially too far from the bar or too close to it.

6.5. PERFORMANCE IN THE BOTWORLD CONSTRUCTION DOMAIN 163

Figure 6.16 displays the estimate of Pn, based on 43 runs of 60 tasks each. Learning

is clearly occurring, with the success rate reaching about 94% by the 40th run. In

some ways this task is not that di�cult; probably most reinforcement learning systems

would have an easy time with it.8 However, it is signi�cantly beyond the power of any

of the other existing action-model learning systems. Most of the actions are durative,

which would be di�cult to represent in a straight STRIPS framework, and there is a

signi�cant amount of noise in the domain, primarily due to perceptual aliasing. (See

Section 1.2.1 for more details.)

It is interesting to note that the success rate appears to level o� around 94%.

This appears to be due to one particular case, that of the TOP of using backward to

achieve AtGrabbingDist(?x). Normally, what happens when the bot is too close to

the bar is that the teacher gets the bot to the bar midline, turns it to face the bar, and

moves it backward until it reaches the correct distance. Thus, we would expect that

the preimage of the TOP
backward
�! AtGrabbingDist(?x) should be OnMidline(?x) ^

FacingBar(?x) ^ :(TooFar(?x)). However, TRAIL occasionally observes situations

where the bot moves backwards from some position where it is too close to the bar but

not on the midline or facing the bar. Thus the preimage is generalized to include these

new situations, and becomes just :(TooFar(?x)). Since this condition is su�cient

to guarantee that backwards will achieve AtGrabbingDist(?x), TRAIL never sees any

negative examples of the TOP, so the preimage is never specialized.

So what is the problem with this? After all, :(TooFar(?x)) is in fact the cor-

rect preimage of the TOP. The problem lies in the delete list associated with the

TOP. Consider the predicate OnMidline(?x). If FacingBar(?x) is true then the
backward
�! AtGrabbingDist(?x) TOP will not make OnMidline(?x) false. However, if

FacingBar(?x) does not hold then it may well delete OnMidline(?x). Now, suppose

the agent is too close to the bar, and is attempting to achieve OnMidline(?x) ^

AtGrabbingDist(?x) (it knows it can achieve FacingBar(?x) later.) If it achieves

OnMidline(?x) �rst, it will then try using the
backward
�! AtGrabbingDist(?x) TOP

8This comment assumes that the reinforcement learning system would be given a few sample
training runs by a teacher; otherwise the exploration problem would probably preclude learning. Of
course, it is unfair to do a direct comparison between unsupervised reinforcement learning and a
system such as TRAIL that has access to a teacher.

164 CHAPTER 6. EXAMPLES AND EVALUATION

to achieve AtGrabbingDist(?x). This will fail immediately, as OnMidline(?x) will

become false. Since OnMidline(?x) is only a delete-list element, TRAIL does not

identify the fact that having FacingBar(?x) true prevents it from being deleted. On

the other hand, achieving AtGrabbingDist(?x) �rst leaves the agent with no way to

achieveOnMidline(?x). Therefore neither way of achieving the goal appears to work.

So what is the solution? It would appear that what is really going on here is

that there is one condition that needs to be achieved, namely OnMidline(?x) ^

AtGrabbingDist(?x). If there were a single predicate P corresponding to that con-

junction, a new TOP
backward
�! P could be correctly learned, and would lead to a suc-

cessful solution. However, it would be misleading to simply add this new predicate

P to the Botworld representation. There is no a priori reason that a user would

know to include P in the representation (clearly, we did not think to include P when

we formalized the domain!) and it is unrealistic to expect that an expert will be

around in all new domains to provide new predicates, especially if analysis is needed

to determine which new predicates are necessary, as in this case.

Therefore, it seems that some sort of statistical analysis is needed to deal with

this problem. If a conjunction of predicates is used very frequently, especially if

it is a combination that seems to be di�cult to achieve, we might want to have

TRAIL create a new predicate expressing the conjunction. This could also form one

of the components of a useful hierarchical learning system, as discussed further in

Section 7.2. However, we clearly need to be careful in introducing such new concepts,

in order to prevent the learning system from being overwhelmed with the newly

created predicates.

6.6 Performance in the Delivery Domain

Now, we examine the learning behavior in the other Botworld-based domain, the

o�ce delivery domain, �rst introduced in Section 1.2.2. Since the robot is given the

basic navigational routines, the domain is essentially a discrete one. Objects are held

by one of a �nite number of agents, each person is in one location, and the robot itself

is either in a room or in transit between rooms. The operations in this task could

6.6. PERFORMANCE IN THE DELIVERY DOMAIN 165

20 30 40

75%

5010

50%

25%

100%

Figure 6.17: Mean Success Rate in the Delivery Domain as a Function of the Number
of Tasks Completed

easily be learned by any action-model learner, such as LIVE or OBSERVER, as well

as by TRAIL. However, note that the number of possible states, even in this simple

domain, is actually very large. Ignoring for the moment the fact that the robot may

have copies of objects, each of the 5 objects can be with each of 4 people or the robot,

and there are at least 5 relevant rooms for the robot to be in. This alone accounts for

56 or 15625 possible states. The number of possible states and goals in this domain

make the transfer of learning across tasks essential for learning. Given this need, the

delivery domain appears to be completely out of reach of any existing reinforcement

learning system.

The performance of TRAIL in the delivery domain, over 50 runs of 50 tasks each,

is shown in Figure 6.17. In these experiments, there were four types of tasks that

were given to the robot: delivering messages to people, fetching articles and delivering

them to people, and delivering copies of articles on regular paper and on slides. (The

last two tasks are distinguished only by the need for a di�erent setting on the copy

machine.) There are 64 possible goals in this domain, 424 if the number of copies to

be made is considered as a distinctive feature.

166 CHAPTER 6. EXAMPLES AND EVALUATION

Although this domain has many possible states, its structure is relatively straight-

forward, and as we said earlier, should be easily learnable by an action-model learner.

Unlike the construction domain, there are no perceptual aliasing e�ects or unreliable

actions to complicate learning. Therefore, it is somewhat surprising that TRAIL does

not learn to complete the tasks more quickly than is shown in Figure 6.17. The

reason for this slow learning is due to one of the heuristics used in TRAIL's learning

mechanism. In inducing preimages, intervals are generalized only to the minimum

extent necessary. Thus, if the copy action has been used to make 3 copies of one

document and 6 copies of another document, TRAIL will assume that the action can

only be used to make between 3 and 6 copies. Thus, if TRAIL is asked to make 8

copies of a document, it will not plan to use the copy action, and will need to call the

teacher. Such teacher calls will continue to occur until TRAIL has seen copy tasks and

slide-copy tasks involving both 1 copy and 10 copies (the maximum needed in any of

the example problems.) This fact explains why even after seeing 50 example tasks,

TRAIL has not yet converged to 100% performance on new tasks. The performance

could be improved signi�cantly if TRAIL generalized such intervals by default, but the

selection of a good method for interval generalization is a subject for future research.

6.7 Learning Issues in the Flight Simulator

While TRAIL succeeds quite well at learning in Botworld and the delivery domain,

the
ight simulator domain is considerably more complicated. As we discussed in

Section 6.3, it appears that some aspects of the
ight simulator domain may be

slightly beyond its current abilities. In particular, experimentation with the task of

level
ight (and a few experiments in navigation) revealed a number of issues which

caused di�culty for TRAIL's learning system. Some of the most important of these

issues are listed below.

� The goal of level
ight is really a maintenance goal. A maintenance goal

is one in which a condition, in this case a climb-rate near 0, must be maintained

over some period of time. Since there is no way to represent maintenance goals

within the current TRAIL formalism, the one-time goal Altitude([125::175]) ^

6.7. LEARNING ISSUES IN THE FLIGHT SIMULATOR 167

ClimbRate([�1::1]) is used. But this goal is achieved, at least for a short

period of time, whenever the plane stops climbing, even if it has not reached a

stable state. Therefore, TRAIL often sees action success cases in which actions

such as dec-throttle cause the plane to level out.

� A focus on immediate e�ects can cause TRAIL to learn the wrong oper-

ators. As we saw earlier, when the teacher is achieving level
ight, the sequence

of actions it uses to level o� is: decrease the throttle to 50%, lower the
aps to 0,

and apply the level PID controller. This sequence allows for very stable
ight,

but the climb rate usually becomes 0 while the teacher is lowering the throttle or

the
aps. Therefore TRAIL learns TOPs such as
dec�throttle
�! ClimbRate(?x) and

dec�flaps
�! ClimbRate(?x), rather than the more accurate

level
�!ClimbRate(?x).

Clearly decreasing the throttle to zero is not a safe way to achieve stable level

ight!

� There are some situations in which it is di�cult to correctly identify

action failures. For instance, consider the plan shown in Figure 6.18a. This

plan was constructed by TRAIL in a situation where it was above the target

altitude, and it in fact succeeds, since the up action causes the plane to begin

leveling out once the condition Altitude([125::175]) becomes true. However, the

true precondition for the TOP
up
!ClimbRate(?x) must include the condition

that the current climb rate is less than the target climb rate. TRAIL has a

mechanism for including such conditions (see Section 5.4.3), but it only works

if TRAIL can collect appropriate action failures.

Consider the plan shown in Figure 6.18b. Clearly, it will fail once the altitude

becomes higher than 175. In particular, an activation failure will be detected

for the node Altitude[125::175] since its activating condition is no longer true.

Thus :Altitude(?x) will be included as a side e�ect of the
up
!ClimbRate(?x)

TOP, and no negative instance will be generated to allow TRAIL to induce

the correct preimage. The failure is in fact a failure of case 6 from Table 4.2

rather than case 5, and should thus generate a negative instance rather than

a delete-list element. The true cause of the failure could be determined by

168 CHAPTER 6. EXAMPLES AND EVALUATION

>(?x, 175)Altitude(?x)

Altitude[125..175]

up

down-slow

Altitude[125..175] ClimbRate[-1..1]

Altitude[125..175]

up

Altitude[125..175] ClimbRate[-1..1]

up-slow

Throttle[75]

T

inc-throttle

(a) (b)

Figure 6.18: Two Plans For Level Flight

repeated experimentation, but experimentation in the
ight simulator has its

own di�culties, as discussed below.

� Experimentation in the domain is usually not very e�ective. In some

domains, such as the delivery domain or the part-machining domain used for

experimentation in EXPO (Gil 1992), experiments can be carried out without

drastically a�ecting the state of the system. However, in a real-time domain

such as the
ight simulator, the experiment itself can often have undesirable

e�ects. For instance, experiments using the up action often take the plane so

high that once the experiment is over, any down TOP su�ers from a timeout

failure before it can return the plane to the desired altitude. Or worse, if an

experiment is done using an action such as wait, the plane may well crash

before the experiment is completed. Finally, the results of the experiment itself

may not be very consistent. Consider the failure of the TOP
up
!ClimbRate(?x)

mentioned above. If the agent experiments by continuing the up operator, the

controller is su�ciently unreliable that the plane will occasionally level out

during the climb. Thus, TRAIL will believe that the TOP usually does work

and that :Altitude(?x) is an appropriate side e�ect of the TOP. Clearly, some

6.7. LEARNING ISSUES IN THE FLIGHT SIMULATOR 169

better method of experimentation is needed to deal with such domains.

� TRAIL does not have any mechanism for handling conditional side ef-

fects. Due to the dynamics of the simulator, the TOP
level
�!ClimbRate(?x)

works much more reliably with the
aps down than with the
aps up. There-

fore, if the
aps are up, the TOP will often result in an activation failure because

the condition Altitude([125::175]) will become false before the climb rate be-

comes 0. However, this activation failure is due to a side e�ect rather than a

failure of the TOP itself, and thus does not produce a negative instance. TRAIL

has no mechanism for learning the fact that the side e�ect :Altitude(?x) only

occurs if FlapsUp is true. Therefore, TRAIL instead simply learns the fact that

Altitude(?x) is sometimes a delete-list element of the TOP. There is no mecha-

nism for it to realize that the
aps should be lowered before applying the level

action.

� It is di�cult for TRAIL to coordinate multiple variables. Consider the

task of landing at a speci�c point on a runway. The pilot must make sure that

the rate of descent is such that not only will the plane touch down safely, it

will also reach altitude 0 at the appropriate xy location. Such goals require

either a mechanism for explicitly reasoning about time or a new set of domain

predicates designed speci�cally for such navigation tasks.

170 CHAPTER 6. EXAMPLES AND EVALUATION

Chapter 7

Summary and Conclusions

In this thesis, we have presented a learning system for an autonomous agent. This

thesis is intended to help extend the applicability of autonomous learning systems to

domains that are dynamic, unpredictable, and continuous. A number of researchers

have constructed autonomous learning systems, but few of these systems have any

capability to operate in such domains. While the techniques introduced in this thesis

are far from a complete solution to the problems of learning in such domains, we

believe that the thesis is a signi�cant step forward in that direction.

7.1 Summary of TRAIL

TRAIL is an architecture for an autonomous agent, with a primary emphasis on learn-

ing. The agent itself is based on the execution of symbolic, reactive control structures

known as teleo-reactive trees. TR trees allow the agent to execute durative actions

over inde�nite time periods, while reacting appropriately to changes in the environ-

ment that might occur during execution. In addition, the symbolic nature of TR

trees supports their construction through human coding, automated planning, and

experience-based learning.

Learning in TRAIL is based on the assumption that the easiest method of learning

for an autonomous agent is to build a partial world model that can be used to plan

the agent's actions. This approach falls somewhere between the extremes of either

171

172 CHAPTER 7. SUMMARY AND CONCLUSIONS

building a complete world model or learning a complete behavioral policy in the form

of a state-action mapping, both of which appear to be computationally di�cult. In

particular, TRAIL learns action models, known as teleo-operators, that can be used

by an automated planner to construct teleo-reactive trees.

TRAIL learns these teleo-operators from two sources: the execution of TR trees

that have been constructed by the planner, and the actions of an external teacher that

can be called upon to complete goals when the planner is unable to construct a plan.

Once TRAIL has built up an approximate set of action models, its behavior forms a

cycle in which the planner generates TR trees based on the current teleo-operators,

the execution mechanism executes the TR trees, and the learner observes the success

or failure of the trees, and produces an updated set of teleo-operators. This cycle

continues as goals are given to the agent, allowing TRAIL to successively approximate

a correct set of teleo-operators.

The learning itself occurs in two separate phases. First, TRAIL's learner observes

the actions of the external teacher or the results of the execution of a TR tree, and

produces a set of state descriptions, each labeled as a positive or negative instance.

In brief, the execution of a TR node can be classi�ed as either a success, a timeout

failure (in which the action apparently had no signi�cant e�ects), or an activation

failure (in which the action had an undesirable e�ect). Experimentation can also be

used to assist in analyzing the causes of a node failure. Finally, in the second phase of

learning, the positive and negative instances are given as input to a concept learning

algorithm. This algorithm uses Inductive Logic Programming techniques to produce

a symbolic precondition for the teleo-operator in question.

TRAIL has been successfully tested in three domains: a simulated construction

domain, a simulated o�ce delivery domain, and the Silicon Graphics, Inc.
ight sim-

ulator. Experimental results show that TRAIL learns successfully in the construction

and o�ce domains, although not perfectly in the construction domain. TRAIL has

also successfully learned to take o� and land in the
ight simulator, but the interre-

lated variables present in the
ight domain have made it di�cult for TRAIL to obtain

satisfying performance on more complex aerial tasks. However, work with the
ight

simulator domain has led to the development of a number of ideas that are important

7.2. AREAS FOR FUTURE WORK 173

to the TRAIL architecture.

7.2 Areas for Future Work

There are a wide variety of interesting research issues that are raised by the TRAIL

work. The following lists a number of the areas for future work that follow naturally

from the work described in this thesis. Some of them address speci�c limitations of

the TRAIL system, while others are broader issues that were beyond the scope of the

thesis.

� Learning of Hierarchies Any autonomous agent that hopes to be able to

deal with complex real-world domains will have to be able to reason about ac-

tions at multiple levels. Plans must be constructed �rst at a high level, and then

made more detailed through lower-level reasoning. Although the use of durative

actions and teleo-operators can make this lower-level reasoning less computa-

tionally intensive in certain cases, most real-world problems will simply be too

di�cult to solve by reasoning only about base-level actions. Therefore, both

our planning and our learning systems must be able to reason with hierarchies

of actions. The teleo-reactive mechanism naturally allows the construction of

hierarchies of trees (see Nilsson (1994) for more details), but TRAIL's learning

mechanism does not currently have any support for hierarchical learning.

One way of approaching the problem of learning higher-level actions is through

the observation that the act of executing a TR tree is itself a durative action.

Suppose we have constructed a tree that achieves Holding(?x) where ?x is a

bar in the Botworld construction domain. The act of executing this tree has a

precondition (at least one node in the tree must be active), a durative action

(continually �nd the highest true node in the tree and execute the corresponding

action), and an e�ect. Therefore, it can naturally be described by a teleo-

operator. This TOP would contain information on when the tree could be

applied, what the e�ect of it would be, and what any side e�ects might be {

exactly the sort of information that a hierarchical planner would need to know

174 CHAPTER 7. SUMMARY AND CONCLUSIONS

in order to use the tree as a single operator in a high-level plan.

A variety of work has been done on the subject of hierarchy learning for au-

tonomous agents. Drescher's schema mechanism (Drescher 1991) develops com-

plex actions for a tabula rasa autonomous agent, based on Piagetian learning

theory. Ring (1991) combines actions to create operators using reinforcement

learning. Triangle tables (Fikes, Hart & Nilsson 1972, Nilsson 1985) are an

early method of macro-operator creation, while more recent work has focused

on more
exible macro-operators involving iteration and recursion (Shell & Car-

bonell 1989, Shavlik 1990). However, it has been observed that macro-operators

can often increase rather than decrease the complexity of search by increasing

the branching factor (Minton 1989).

� Predicate Invention As we noted several times within this thesis, TRAIL is

very dependent on the initial set of predicates that are given to it. Every

concept that it learns, and every tree that it constructs, must be in terms of

these predicates. Thus, if there is a hidden variable that is needed for learning,

or if the agent wishes to use higher-level predicates for hierarchical planning,

it must be able to make use of some form of predicate invention. Predicate

invention is already used in a number of ILP systems (Stahl 1993) although

most of these methods are not directly applicable to TRAIL.

One obvious source of invented predicates lies in the learned preimages of TOPs.

If an action appears to be unreliable, its preimage may be missing some hidden

variable that is not described by the existing set of predicates. A new pred-

icate can be hypothesized that holds only in those states in which the action

is successful. (This idea is the basis for new feature construction within LIVE

(Shen 1994).) However, unless the new feature can easily be explained in terms

of past actions or world states, it can be di�cult to determine whether the new

feature holds in a given state, and thus di�cult to use the new feature when

planning or acting.

As was mentioned above, predicate invention based on past actions of the agent

is an important part of the action-model learning system LIVE. Drescher (1991)

7.2. AREAS FOR FUTURE WORK 175

includes a mechanism for learning new predicates as a component of his schema

mechanism for learning hierarchies of actions.

Predicate invention is also closely related to the learning of hierarchies, as

higher-level predicates as well as higher-level actions will probably be needed.

Again, preimages are an obvious candidate for the construction of new fea-

tures. For instance, a predicate with the meaning \Holding(?x)-operator-can-

be-applied" is likely to be of use in building higher-level plans that might make

use of our hierarchical Holding(?x) operator. This is similar to the idea of

predicate relaxation used in the hierarchical planner PABLO (Christensen 1990).

Predicate relaxation, in brief, is a systematic method for weakening a condition

so that it holds in states in which it can easily be made true as well as states

in which it is already true.

Finally, new features may be constructed from conjunctions of predicates that

frequently appear together in plans. FOCL (Silverstein & Pazzani 1991) is a

version of FOIL that attempts to solve the literal connectedness problem by

inventing new predicates that are combinations of existing predicates. Con-

junctions of predicates may have another important use in TRAIL as well, as

TRAIL learns TOPs only for single postconditions. If it should need to have a

TOP that achieves multiple conditions simultaneously, it cannot learn such a

TOP using the current learning algorithm. (Such a situation was described in

Section 6.5.) However, like all predicate invention methods, the construction

of conjunctive features carries the risk of overwhelming the learner with newly

created predicates.

� Experimentation and Exploration TRAIL at present uses only a simple form

of experimentation, designed to determine whether an activation failure is due

to an overly general or overly speci�c preimage (for more details on TRAIL's

experimentation, see Section 4.4.2.) There are several other possible uses for

experimentation in a learning system, however. Any time an action fails to have

an expected e�ect, the agent might wish to experiment to determine whether

the failure was a random execution failure or truly a case in which the action

176 CHAPTER 7. SUMMARY AND CONCLUSIONS

will not work. Since experimentation is computationally expensive, the agent

may not wish to experiment upon every action failure, but rather only on those

that directly contradict an earlier action success. Experimentation in this case

would allow the agent to determine a better estimate for the actual probability

of success.

Another form of experimentation would be useful in order to reduce dependence

on the teacher in the case where the agent is unable to construct a plan for some

goal. In this case, the agent may try actions in states that are somewhat similar

to states in which the action has been observed to work.1 If the action should

succeed, a new positive instance has been observed and the TOP preimage

can be generalized without having to resort to the teacher. This is only one

approach to the more general problem of intelligent exploration of unknown

environments.

Both LIVE (Shen 1994) and EXPO (Gil 1992) include signi�cantly more experi-

mentation than does TRAIL. LIVE does experimentation by applying operators

that it believes to be faulty, using a new (essentially arbitrary) assignment of

variables to objects, in hopes of discovering unexpected behavior. EXPO iden-

ti�es missing preconditions for operators by hypothesizing a list of possibilities

and then generating experiments in which some of the hypothesized precondi-

tions apply. Both of these methods could potentially be added to the TRAIL

architecture, and might well reduce its dependence on the teacher. A variety

of other less related research work has also included methods of experimenta-

tion, including Mitchell's LEX system (Mitchell, Utgo� & Banerji 1983) and

Christiansen's work on learning manipulation strategies for robotic graspers

(Christiansen, Mason & Mitchell 1990, Christiansen 1989).

� Learning from Delayed E�ects One of the main di�culties that plagued

TRAIL in the
ight simulator domain was an inability to reason about the delayed

e�ects of actions. Recall that TRAIL assumes that e�ects are due either to

whatever action TRAIL was taking at the time or to some unpredictable outside

1This would be particularly appropriate for interval preimages, as discussed in Section 6.6.

7.2. AREAS FOR FUTURE WORK 177

agency. Thus, TRAIL is unable to accurately represent actions that may have

e�ects that persist after completion of the action. For instance, consider the

up action in the
ight simulator. After the action is complete, the aircraft will

continue to climb for some time, even if the level action is applied. This e�ect

could conceivably be modeled as a conditional e�ect of the level action that

depends on the initial climb rate, but this is not really an accurate model.

What is needed in this case is probably a fundamental extension of TRAIL's

action representation. While teleo-operators are better suited to representing

processes than are traditional STRIPS operators, it appears that they are not

su�cient to represent actions such as the
ight simulator up action. An agent

that can learn successfully in the
ight simulator domain most likely will need

to be able to reason explicitly about continuous processes. DeJong (1994) has

done some excellent preliminary work in this direction. However, once actions

are allowed to have delayed e�ects, the agent has a temporal credit assignment

problem in deciding which action was responsible for a particular e�ect. Tem-

poral credit assignment has been examined in much detail in the reinforcement

learning community (Watkins 1989) but it is not clear how to extend most of

this work beyond assigning credit for a single numerical reward or punishment.

� Real-time Performance There are many domains in which an autonomous

agent does not need to worry very much about time spent learning and planning.

Tasks such as o�ce delivery, construction, and housework do not generally

require split-second response, so it is acceptable if the agent pauses for several

seconds in order to learn or plan. (Of course, much of the learning might be

saved for \down time" when the robot is not needed for some more urgent

task.) However, in order to be able to realistically handle domains in which

real-time response is necessary, such as the
ight simulator, the agent will need

to be able to do its learning and planning in parallel with its other behaviors.

For instance, the operation of the low-level PID controllers for our aircraft is

independent of TRAIL's higher-level behaviors, and even if TRAIL is temporarily

left without a high-level goal (due to a plan failure, for instance), it is fairly easy

178 CHAPTER 7. SUMMARY AND CONCLUSIONS

to program in a set of low-level behaviors that keep the aircraft stable, even if it

is not achieving any navigational goals.2 Any autonomous agent in a real-time

domain will presumably need such parallelism, although the current state may

change signi�cantly while planning is occurring, resulting in a signi�cantly more

di�cult time-dependent planning problem (Dean & Boddy 1988).

The current TRAIL system, unfortunately, does not include such parallelism.

The implementation of a parallel processing system for planning and acting in

LISP is a considerable project, and not really related to the main aim of this

thesis. Instead, our
ight simulator test runs all simply pause the simulator at

appropriate times, simulating an instantaneous learning and planning computa-

tion. (The planning was in fact nearly instantaneous, as the plans constructed

were all relatively small. The learning, however, was not nearly so quick.)

� Improvements to the Learning Algorithm There are at least three obvious

improvements we could make to TRAIL's learning algorithm. First, the noise-

handling mechanism of the algorithm could easily be improved. This issue was

examined in more detail in Section 5.5.4.

Second, the current algorithm is non-incremental, so the preimage must be

completely recomputed every time a new instance is generated. There is little

existing work on incremental ILP algorithms, although the HILLARY (Iba et

al. 1988) incremental learning algorithm has been applied to relational as well

as attribute-value problems. A few early ILP systems such as MIS (Shapiro

1983) were incremental but relied on an oracle to answer membership queries.

Some of the more recent work on theory re�nement has been in the direction of

incremental algorithms (Mooney 1992).

Finally, real world domains often have many more predicates than the domains

described in this thesis. There is considerable work in the concept learning

community on the elimination of irrelevant features (John, Kohavi & P
eger

2This is not true, of course, in a less benign domain such as the dog�ght environment. However,
in such an environment, we can expect somewhat worse performance until learning has reached a
reasonable level.

7.2. AREAS FOR FUTURE WORK 179

Holding(Bar1)

AtGrabbingDist(Bar1)
FacingBar(Bar1)

FacingBar(Bar1)

OnMidline(Bar1)

OnMidline(Bar1)

OnMidline(Bar1)

FacingMidline(Bar1)
ParallelTo(Bar1)

T

forward

forward

turn

turn

grab

Figure 7.1: A Standard TR Tree For Bar-Grabbing

1994, Kohavi & John 1996). However, the problem for TRAIL is somewhat

broader, as irrelevant predicates are a problem both in the induction of preim-

ages and in the selection of TOPs to be learned. If there are many predicates

that change in the environmental descriptions, TRAIL will construct at least

one TOP for each of them, potentially leading to an overwhelming number of

learned TOPs.

� Fuzzy TR Trees One weakness of the current TR tree formalism is that it con-

ceptualizes the world as being entirely in a single state. For instance, consider a

typical bar-grabbing tree as shown in Figure 7.1. As the bot approaches the bar

midline, the OnMidline(Bar1) node is false. At some point, the bot reaches

the midline, and it suddenly becomes true. Therefore, the bot's behavior is to

execute only the forward action until it reaches the midline, then execute only

the turn action until it is facing the bar.

180 CHAPTER 7. SUMMARY AND CONCLUSIONS

Instead, we could think of the actions in the TR tree as being determined by

fuzzy predicates with varying degrees of truth. In a fuzzy TR tree (Shoykhet

1996), as the bot approaches the midline, the OnMidline node gradually be-

comes true. Thus, the bot would initially be moving directly forward, but as

the OnMidline node became more and more true, the turn action would grad-

ually become more activated, causing the bot to begin to turn as well as move.

The strength of the turn action would continue to increase as the OnMidline

node became true, then would eventually decline again as the next higher node,

FacingBar, began to become true.

7.3 Lessons Learned and Conclusions

This thesis presented TRAIL, an architecture for an autonomous agent that is ca-

pable of displaying goal-directed reactive behavior, creating plans for tasks through

automated planning and replanning, and learning models of actions that can be used

for planning. We have shown that this architecture is capable of learning success-

fully in simple simulated domains containing continuous variables, durative actions,

structured state descriptions, and unpredictable action e�ects.

The development of the TRAIL architecture has also included a number of other

advances, including the development of a new model of actions that is appropriate

for reactive agents in continuous domains, an analysis of the possible causes of action

failure for durative actions, a demonstration of the use of a DINUS-like Inductive Logic

Programming algorithm for action-model learning, and the development of a metric

suitable for evaluating the learning behavior of autonomous agents in new domains.

Section 7.2 highlighted some of the areas of future work that are needed to ex-

tend the ideas of the TRAIL architecture to more complicated and realistic domains,

including the learning of hierarchies of predicates and actions, new methods of exper-

imentation and exploration, and strategies for dealing with delayed and interacting

e�ects. We are hopeful that future research in these directions will eventually point

the way towards the development of a general-purpose learning architecture, with

which autonomous agents will ultimately be able to learn in the real world.

Bibliography

Agre, P. & Chapman, D. (1987), PENGI: An implementation of a theory of activity, in

\AAAI-87: Proceedings of the Sixth National Conference on Arti�cial Intelligence",

AAAI Press / The MIT Press, pp. 268{272.

Angluin, D. (1987), \Learning regular sets from queries and counterexamples", Information

and Computation 75(2), 87 { 106.

Angluin, D. (1988), \Queries and concept learning", Machine Learning 2(4), 319 { 342.

Bates, J. (1992), \Edge of intention", Presented at AAAI Arts Exhibition 1992, SigGraph

1993, Ars Electronica 1993, and the Boston Computer Museum.

Bates, J. (1994), \The role of emotion in believable agents", Communications of the ACM

37(7), 122{125.

Baum, L., Petrie, T., Soules, G. & Weiss, N. (1970), \A maximization technique occur-

ring in the statistical analysis of probabilistic functions of Markov chains", Annals of

Mathematical Statistics 41, 164 { 171.

Bellman, R. E. (1962), Dynamic Programming, Princeton, NJ: Princeton University Press.

Benson, S. & Nilsson, N. (1995), Reacting, planning, and learning in an autonomous agent,

in K. Furukawa, D. Michie & S. Muggleton, eds, \Machine Intelligence 14", Oxford:

the Clarendon Press.

Bollinger, J. G. & Du�e, N. A. (1988), Computer Control of Machines and Processes,

Reading, Massachusets: Addison-Wesley.

Bratko, I. & Muggleton, S. (1995), \Applications of inductive logic programming", Com-

munications of the ACM 38(11), 65 { 70.

181

182 BIBLIOGRAPHY

Bratko, I., Urban�ci�c, T. & Sammut, C. (1995), Behavioural cloning: Phenomena, results,

and problems, Unpublished.

Brooks, R. (1986), \A robust layered control system for a mobile robot", IEEE Journal of

Robotics and Automation RA-2(1), 14{23.

Brooks, R. A. (1989a), Engineering approach to building complete, intelligent beings, in

\Proceedings of the SPIE { The International Society for Optical Engineering", Vol.

1002, pp. 618 { 625.

Brooks, R. A. (1989b), \A robot that walks; emergent behaviors from a carefully evolved

network", Neural Computation 1(2), 253 { 262.

Cameron-Jones, R. & Quinlan, J. R. (1993), Avoiding pitfalls when learning recursive the-

ories, in R. Bajcsy, ed., \Proceedings of the Thirteenth International Joint Conference

on Arti�cial Intelligence", Morgan Kaufmann.

Cestnik, B. (1990), Estimating probabilities: A crucial task in machine learning, in \Pro-

ceedings of the Ninth European Conference on Machine Learning", pp. 147 { 149.

Christensen, J. (1990), A hierarchical planner that generates its own hierarchies, in \AAAI-

90: Proceedings of the Eighth National Conference on Arti�cial Intelligence", AAAI

Press / The MIT Press, pp. 1004 { 1009.

Christiansen, A. D. (1989), Automated acquisition of task theories for robotic manipulation,

PhD thesis, Carnegie Mellon University.

Christiansen, A. D. (1991), Manipulation planning from empirical backprojection, in \Pro-

ceedings. 1991 IEEE International Conference on Robotics and Automation", pp. 762{

768.

Christiansen, A. D., Mason, M. T. & Mitchell, T. M. (1990), Learning reliable manipulation

strategies without initial physical models, in \Proceedings of the 1990 IEEE Interna-

tional Conference on Robotics and Automation", Vol. 2, IEEE Computing Society

Press, pp. 1224{30.

Clark, P. & Niblett, T. (1989), \The CN2 induction algorithm",Machine Learning 3(4), 261

{ 283.

BIBLIOGRAPHY 183

Connell, J. (1992), SSS: A hybrid architecture applied to robot navigation, in \IEEE Con-

ference on Robotics and Automation", pp. 2719 { 2724.

Dean, T. & Boddy, M. (1988), An analysis of time-dependent planning, in \AAAI-88:

Proceedings of the Seventh National Conference on Arti�cial Intelligence", American

Association for Arti�cial Intelligence, AAAI Press / The MIT Press, pp. 49 { 54.

DeJong, G. F. (1994), \Learning to plan in continuous domains", Arti�cial Intelligence

65, 71 { 141.

Dietterich, T. G. (1990), \Machine learning", Annual Review of Computer Science 4, 255

{ 306.

Dolvsak, B., Bratko, I. & Jezernik, A. (1994), Finite-element mesh design: An engineering

domain for ILP application, in \Proceedings of the Fourth International Workshop on

Inductive Logic Programming ILP-94", Bad Honnef/Bonn.

Drescher, G. (1991),Made Up Minds: A Constructivist Approach to Arti�cial Intelligence,

MIT Press.

D�zeroski, S. (1995), Learning �rst-order clausal theories in the presence of noise, in \Pro-

ceedings of the Fifth Scandinavian Conference on Arti�cial Intelligence", pp. 51 { 60.

D�zeroski, S., Muggleton, S. & Russell, S. (1992), PAC learnability of determinate logic

programs, in \Proceedings of the Fifth ACM Workshop on Computational Learning

Theory", pp. 128 { 135.

D�zeroski, S., Muggleton, S. & Russell, S. (1993), Learnability of constrained logic programs,

in \Proceedings of the European Conference on Machine Learning", pp. 342 { 347.

D�zeroski, S., Todorovski, L. & Urban�ci�c, T. (1995), Handling real numbers in ILP: a step

towards better behavioral clones, in \Proceedings of the Eighth European Conference

on Machine Learning", pp. 283 { 286.

Etzioni, O. & Weld, D. (1994), \A softbot-based interface to the internet", Communications

of the ACM 37(7), 72 { 76.

Fikes, R. E. & Nilsson, N. J. (1971), \STRIPS: A new approach to the application of

theorem proving to problem solving", Arti�cial Intelligence 2, 189{208.

184 BIBLIOGRAPHY

Fikes, R. E., Hart, P. E. & Nilsson, N. J. (1972), \Learning and executing generalized robot

programs", Arti�cial Intelligence 4, 251 { 288.

Flynn, A. M. & Brooks, R. A. (1988), MIT mobile robots { what's next?, in \IEEE Inter-

national Conference on Robotics and Automation", pp. 611 { 617.

Frazier, M. & Page, C. (1993), Learnability in inductive logic programming: some basic

results and techniques, in \AAAI-93: Proceedings of the Eleventh National Conference

on Arti�cial Intelligence", American Association for Arti�cial Intelligence, AAAI Press

/ The MIT Press, pp. 93 { 98.

Galles, D. (1993), Map building and following using teleo-reactive trees, in \Intelligent

Autonomous Systems: IAS3", Washington: IOS Press, pp. 390 { 398.

Gil, Y. (1992), Acquiring Domain Knowledge for Planning by Experimentation, PhD thesis,

Carnegie Mellon University.

Hanks, S., Pollack, M. & Cohen, P. (1993), \Benchmarks, test beds, controlled experimen-

tation, and the design of agent architectures", AI Magazine 14(4), 17{42.

Hayes-Roth, B. (1995), Agents on stage: Advancing the state of the art of AI, in C. S. Mel-

lish, ed., \Proceedings of the Fourteenth International Joint Conference on Arti�cial

Intelligence", Morgan Kaufmann, San Mateo, CA, pp. 967 { 971.

Hertz, J., Krough, A. & Palmer, R. G. (1991), Introduction to the Theory of Neural Com-

putation, Santa Fe Institute Studies in the Sciences of Complexity, Reading, Mas-

sachusets: Addison-Wesley.

Iba, W., Wogulis, J. & Langley, P. (1988), Trading o� simplicity and coverage in incremental

concept learning, in J. Laird, ed., \Proceedings of the Fifth International Conference

on Machine Learning", Morgan Kaufmann, pp. 73 { 79.

Jennings, N. & Wooldridge, M. (1996), \Software agents", IEE Review 42(1), 17 { 20.

John, G. H., Kohavi, R. & P
eger, K. (1994), Irrelevant features and the subset selec-

tion problem, in H. Hirsh & W. Cohen, eds, \Machine Learning: Proceedings of the

Eleventh International Conference", Morgan Kaufmann, pp. 121{129.

BIBLIOGRAPHY 185

Kaelbling, L. P. & Rosenschein, S. (1990), \Action and planning in embedded agents",

Robotics and Autonomous Systems 6, 35 { 48.

Kazakov, D., Popelinsky, L. & Stepankova, O. (1996), \Review of available ILP datasets",

Available at http://www.gmd.de/ml-archive/datasets/ilp-res.html.

King, R., Sternberg, J. & Srinivasan, A. (1995), \Relating chemical activity to structure:

an examination of ILP successes", New Generation Computing 13(3-4), 411 { 433.

Kohavi, R. & John, G. H. (1996), \Wrappers for feature subset selection", Arti�cial Intel-

ligence. To Appear.

Korf, R. E. (1985), \Depth �rst iterative deepening: An optimal admissible tree search",

Arti�cial Intelligence 27(1), 97{109.

Korf, R. E. (1988), Search: A survey of recent results, inH. Shrobe, ed., \Exploring Arti�cial

Intelligence", San Mateo, California: Morgan Kaufmann.

Kuipers, B. & Byun, Y.-T. (1991), \A robot exploration and mapping strategy based on

a semantic hierarchy of spatial representations", Robotics and Autonomous Systems

8(1-2), 47 { 63.

Langley, P. (1996), Elements of Machine Laerning, San Mateo, California: Morgan Kauf-

mann.

Lavra�c, N. & D�zeroski, S. (1994), Inductive Logic Programming: Techniques and Applica-

tions, Chichester, England: Ellis Horwood.

Lavra�c, N., D�zeroski, S. & Grobelnik, M. (1991), Learning nonrecursive de�nitions of rela-

tions with LINUS, in \Proceedings of the Fifth European Working Session on Learn-

ing", pp. 265 { 281.

Littman, M., Cassandra, A. & Kaelbling, L. P. (1995), Learning policies for partially observ-

able environments: Scaling up, in A. Prieditis & S. Russell, eds, \Machine Learning:

Proceedings of the Twelfth International Conference", Morgan Kaufmann, pp. 362 {

369.

Lozano-P�erez, T., Mason, M. T. & Taylor, R. (1984), \Automatic synthesis of �ne-motion

strategies for robots", International Journal of Robotics Research 3(1), 3 { 24.

186 BIBLIOGRAPHY

Mahadevan, S. (1992), Enhancing transfer in reinforcement learning by building stochas-

tic models of robot actions, in D. Sleeman & P. Edwards, eds, \Machine Learning:

Proceedings of the Ninth International Workshop", Morgan Kaufmann, pp. 290 { 299.

Mahadevan, S. & Connell, J. (1992), \Automatic programming of behavior-based robots

using reinforcement learning", Arti�cial Intelligence 55(2-3), 311{365.

McCarthy, J. & Hayes, P. (1970), Some philosophical problems from the standpoint of arti-

�cial intelligence, in B. Meltzer & D. Michie, eds, \Machine Intelligence 4", Edinburgh:

Edinburgh University Press, pp. 463{502.

Michalski, R. (1983), A theory and methodology of inductive learning, in \Machine Learn-

ing, An Arti�cial Intelligence Approach, Volume I", Palo Alto, California: Tioga Press.

Minton, S. (1989), Selectively generalizing plans for problem solving, in \Proceedings of the

Ninth International Joint Conference on Arti�cial Intelligence", Morgan Kaufmann,

pp. 596 { 599.

Mitchell, T. M. (1982), \Generalization as search", Arti�cial Intelligence 18, 203{266.

Mitchell, T. M., Keller, R. & Kedar-Cabelli, S. (1986), \Explanation-based generalization:

A unifying view", Machine Learning 1(1), 47 { 80.

Mitchell, T., Utgo�, P. & Banerji, R. (1983), Learning by experimentation: acquiring and

re�ning problem-solving heuristics, in \Machine Learning, An Arti�cial Intelligence

Approach, Volume I", Palo Alto, California: Tioga Press.

Mooney, R. J. (1992), Batch versus incremental theory re�nement, in \Proceedings of AAAI

Spring Symposium on Knowledge Acquisition".

Moore, A. W. (1990), Acquisition of dynamic control knowledge for a robotic manipulator,

in B. Porter & R. Mooney, eds, \Proceedings of the Seventh International Conference

on Machine Learning", Morgan Kaufmann, pp. 244 { 252.

Moore, A. W. & Atkinson, C. G. (1993), \Prioritized sweeping: Reinforcement learning

with less data and less real time", Machine Learning 13(1), 103 { 130.

Moravec, H. (1988), \Certainty grids for mobile robots", AI Magazine 9(2), 61 { 74.

BIBLIOGRAPHY 187

Muggleton, S. & Feng, C. (1990), E�cient induction of logic programs, in \Proceedings of

the First Conference on Algorithm Learning Theory", pp. 368 { 381.

Muggleton, S., ed. (1992), Inductive Logic Programming, San Diego, California: Academic

Press.

Muggleton, S., King, R. & Sternberg, M. (1992), Protein secondary structure prediction

using logic, in \Proceedings of the Second International Workshop on Inductive Logic

Programming".

Murphy, P. M. & Aha, D.W. (1994), \UCI repository of machine learning databases", Avail-

able by anonymous ftp to ics.uci.edu in the pub/machine-learning-databases

directory.

Nilsson, N. J. (1980), Principles of Arti�cial Intelligence, San Mateo, California: Morgan

Kaufmann.

Nilsson, N. J. (1984), Shakey the robot, Technical Report 323, SRI International, Menlo

Park, California.

Nilsson, N. J. (1985), Triangle tables: A proposal for a robot programming language, Tech-

nical Report 347, SRI International, Menlo Park, California.

Nilsson, N. J. (1992), Towards agent programs with circuit semantics, Technical Report

STAN-CS-92-1412, Stanford University Computer Science Department, Stanford, Cal-

ifornia.

Nilsson, N. J. (1994), \Teleo-reactive programs for agent control", Journal of Arti�cial

Intelligence Research 1, 139 { 158.

Peng, J. & Williams, R. J. (1993), \E�cient learning and planning within the Dyna frame-

work", Adaptive Behavior 1(4), 437 { 454.

Plotkin, G. (1969), A note on inductive generalization, in B. Meltzer & D. Michie, eds,

\Machine Intelligence 5", Edinburgh: Edinburgh University Press, pp. 153 { 163.

Pollack, M. E. & Ringuette, M. (1990), Introducing the Tileworld: Experimentally evaluat-

ing agent architectures, in \AAAI-90: Proceedings of the Eighth National Conference

on Arti�cial Intelligence", AAAI Press / The MIT Press, pp. 183 { 189.

188 BIBLIOGRAPHY

Pomerleau, D. (1991), \E�cient training of arti�cial neural networks for autonomous nav-

igation", Neural Computation 3(1), 88 { 97.

Pomerleau, D. (1993), Neural Network Perception for Mobile Robot Guidance, Boston:

Kluwer Academic Publishers.

Quinlan, J. R. (1986), \Induction of decision trees", Machine Learning 1, 81{106.

Quinlan, J. R. (1990), \Learning logical de�nitions from relations", Machine Learning

5(3), 239 { 266.

Quinlan, J. R. (1991), \Knowledge acquisition from structured data - using determinate

literals to assist search", IEEE Expert 6(6), 32 { 37.

Quinlan, J. R. (1992), C4.5: Programs for Machine Learning, San Mateo, California: Mor-

gan Kaufmann.

Rabiner, L. (1990), A tutorial on hidden Markov models and selected applications in speech

recognition, in A. Waibel & K.-F. Lee, eds, \Readings in Speech Recognition", San

Mateo, California: Morgan Kaufmann.

Rabiner, L. R. & Juang, B. H. (1986), \An introduction to hidden Markov models", IEEE

Acoustics, Speech, and Signal Processing Magazine pp. 4 { 16. January, 1986.

Ring, M. (1991), Incremental development of complex behaviors through automatic con-

struction of sensory-motor hierarchies, in L. A. Birnbaum & G. C. Collins, eds, \Ma-

chine Learning: Proceedings of the Eighth International Workshop", Morgan Kauf-

mann, pp. 343 { 347.

Rivest, R. & Schapire, R. (1993), \Inference of �nite automata using homing sequences",

Information and Computation 103(2), 299 { 347.

Rogers, S. O. & Laird, J. E. (1996), Symbolic performance and learning in complex environ-

ments, in \AAAI-96: Proceedings of the Thirteenth National Conference on Arti�cial

Intelligence", American Association for Arti�cial Intelligence, AAAI Press / The MIT

Press, p. 1405. abstract; longer version available.

Russell, S. & Norvig, P. (1995), Arti�cial Intelligence: A Modern Approach, Prentice Hall.

BIBLIOGRAPHY 189

Sablon, G. (1994), Personal Communication.

Sablon, G. & Bruynooghe, M. (1994), Using the event calculus to integrate planning and

learning in an intelligent autonomous agent, in C. B�ackstr�om & E. Sandewall, eds,

\Current Trends in AI Planning", IOS Press, pp. 254 { 265.

Sammut, C., Hurst, S., Kedzier, D. & Michie, D. (1992), Learning to
y, in D. Sleeman &

P. Edwards, eds, \Machine Learning: Proceedings of the Ninth International Work-

shop", Morgan Kaufmann, pp. 385 { 393.

Schoppers, M. J. (1987), Universal plans for reactive robots in unpredictable environments,

in \AAAI-87: Proceedings of the Sixth National Conference on Arti�cial Intelligence",

AAAI Press / The MIT Press, pp. 1039{1046.

Schoppers, M. J. & Shu, R. (1990), An implementation of indexical-functional reference

for embedded execution of symbolic plans, in \DARPA Workshop on Innovative Ap-

proaches to Planning, Scheduling, and Control".

Shapiro, E. (1983), Algorithmic Program Debugging, Cambridge, MA: MIT Press.

Shavlik, J. W. (1990), \Acquiring recursive and iterative concepts with explanation-based

learning", Machine Learning 5(1), 39 { 70.

Shell, P. & Carbonell, J. (1989), Towards a general framework for composing disjunctive

and iterative macro-operators, in N. Sridharan, ed., \Proceedings of the Eleventh

International Joint Conference on Arti�cial Intelligence", Morgan Kaufmann, pp. 596

{ 602.

Shen, W.-M. (1989), Learning from the Environment Based on Actions and Percepts, PhD

thesis, Carnegie Mellon University.

Shen, W.-M. (1990), Complimentary discrimination learning: A duality between general-

ization and discrimination, in \Proceedings of National Conference on Arti�cial Intel-

ligence", MIT Press, pp. 834 { 839.

Shen, W.-M. (1994),Autonomous Learning from the Environment, Computer Science Press,

W.H. Freeman and Company.

190 BIBLIOGRAPHY

Shoham, Y. & Goyal, N. (1988), Temporal reasoning, in H. Shrobe, ed., \Exploring Arti�cial

Intelligence", San Mateo, California: Morgan Kaufmann.

Shoykhet, A. (1996), Fuzzy t-r trees, Stanford University undergraduate project report.

Silverstein, G. & Pazzani, M. J. (1991), Relational cliches: Constraining constructive in-

duction during relational learning, in L. A. Birnbaum & G. C. Collins, eds, \Machine

Learning: Proceedings of the Eighth International Workshop", Morgan Kaufmann,

pp. 203 { 207.

Stahl, I. (1993), Predicate invention in ILP - an overview, in \Machine Learning: EMCL-93.

European Conference on Machine Learning Proceedings", pp. 313 { 322.

Tate, A., Hendler, J. & Drummond, M. (1990), A review of AI planning techniques, in

J. Allen, J. Hendler & A. Tate, eds, \Readings in Planning", San Mateo, California:

Morgan Kaufmann.

Teo, P. (1992), Botworld, unpublished manual.

Urban�ci�c, T. & Bratko, I. (1994), Reconstructing human skill with machine learning, in

\Proceedings of the 11th European Conference on Arti�cial Intelligence", John Wiley

& Sons, pp. 498 { 502.

Valiant, L. G. (1984), \A theory of the learnable", Communications of the ACM 27, 1134{

1142.

Wang, X. (1994), Learning planning operators by observation and practice, in K. Hammond,

ed., \Proceedings of the Second International Conference on AI Planning Systems",

AAAI Press, pp. 335{341.

Wang, X. (1995a), Personal Communication.

Wang, X. (1995b), Learning by observation and practice: An incremental approach for

planning operator acquisition, in A. Prieditis & S. Russell, eds, \Machine Learning:

Proceedings of the Twelfth International Conference", Morgan Kaufmann, pp. 549 {

557.

Wang, X. & Carbonell, J. (1994), \Learning by observation and practice: Towards real

applications of planning systems", AAAI Fall Symposium on Planning and Learning:

On to Real Applications.

BIBLIOGRAPHY 191

Watkins, C. (1989), Learning from Delayed Rewards, PhD thesis, Cambridge University.

Psychology Department.

Whitehead, S. D. & Ballard, D. H. (1990), Active perception and reinforcement learning,

in B. Porter & R. Mooney, eds, \Proceedings of the Seventh International Conference

on Machine Learning", Morgan Kaufmann, pp. 179{188.

Yamauchi, B. & Langley, P. (1996), Place recognition in dynamic real-world environments,

in \Proceedings of ROBOLEARN-96: International Workshop for Learning in Au-

tonomous Robots".

