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Abstract
Sparse coding is an unsupervised learning al-
gorithm for finding concise, slightly higher-
level representations of an input, and has
been successfully applied to self-taught learn-
ing (Raina et al., 2007), where the goal is
to use unlabeled data to help on a super-
vised learning task, even if the unlabeled
data cannot be associated with the labels of
the supervised task. However, sparse coding
uses a Gaussian noise model and a quadratic
loss function, and thus performs poorly if
applied to binary valued, integer valued, or
other non-Gaussian data, such as text. Draw-
ing on ideas from Generalized linear models
(GLMs), we present a generalization of sparse
coding to learning with data drawn from
any exponential family distribution (such as
Bernoulli, Poisson, etc). This gives a method
that we argue is much better suited to model
other data types than Gaussian. We present
an efficient algorithm for solving the opti-
mization problem defined by this model. We
also show that the new model results in sig-
nificantly improved self-taught learning per-
formance when applied to text data.

1. Introduction

We consider the “self-taught learning” problem, in
which we are given just a few labeled examples for a
classification task, and also large amounts of unlabeled
data that is only mildly related to the task (Raina
et al., 2007; Weston et al., 2006). Specifically, the un-
labeled data may not share the class labels or arise
from the same distribution. For example, given only a
few labeled examples of webpages about “Baseball” or
“Football”, along with access to a large corpus of unre-
lated webpages, we might want to accurately classify
new baseball/football webpages. The ability to use
such easily available unlabeled data has the potential

to greatly reduce the effect of data sparsity, and thus
greatly improve performance on labeling or tagging ap-
plications in language processing.

Our approach uses the unlabeled data to learn a high-
level representation of the inputs, and then using this
representation to provide features for classification.
Raina et al. demonstrate such a method for domains
such as image classification, using the “sparse coding”
model (Olshausen & Field, 1996). In this model, given
real-valued vectors x ∈ R

k as inputs, we attempt to
learn a large set of basis vectors b1, b2, . . . , bn ∈ R

k

such that the input can be represented as a linear com-
bination of only a few basis vectors: i.e., x ≈

∑

j bjsj ,
where sj is the weight (or “activation”) for basis vec-
tor bj , and most sj values are zero (or, the vector s
is sparse). Informally, the activation vector s used to
reconstruct an input x often captures the few “most
important” patterns in x. For example, when this
model is applied to images, the basis vectors learnt by
the model represent various edge patterns, and thus s
captures the edges present in an image input x. In-
deed, when the activations s are used as features in
a standard supervised learning algorithm (such as an
SVM), the generalization performance is often better
than when using the raw input x as features.

The sparse coding algorithm for learning basis vec-
tors is based on a Gaussian noise model for input x:
P (x|b, s) = N (

∑

j bjsj , σ
2I), where σ2 is fixed. A

sparse prior P (s) ∝
∏

j exp(−β|sj |) is assumed on
the activations to penalize nonzero activations. Then,
given unlabeled examples {x(1), x(2), . . .} and the cor-
responding activations {s(1), s(2), . . .}, good basis vec-
tors are estimated by solving the MAP optimization
problem, which is equivalent to solving:1

min
{bj},{s(i)}

1
2σ2

∑

i ‖x
(i) −

∑n
j=1 bjs

(i)
j ‖

2 + β
∑

i,j |s
(i)
j |

subject to ‖bj‖
2 ≤ c, ∀j = 1, ..., n.

1Following previous work, we constrain the norm of each
basis vector bj to make the problem well-posed.
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This optimization problem is convex separately in the
b and s variables (though not jointly convex). The
problem can be solved efficiently by alternating min-
imization over b and s variables (Lee et al., 2007).
Finally, given learnt basis vectors b, the features for
a new input example x are derived by estimating:
arg maxs P (s|x, b) = arg maxs P (x|b, s)P (s).

2. Self-taught learning for text data

The probabilistic model used in sparse coding assumes
that the input vectors x are real-valued, and that they
can be well described using a Gaussian noise model.
However, this is an inappropriate assumption for text
data, which is often represented as a binary “bag-of-
words” vector x ∈ {0, 1}k, where the i-th feature is 1
if the i-th word in our vocabulary occured in the doc-
ument, or as a word-counts vector x ∈ {0, 1, 2, . . . }k,
where the i-th feature represents the number of times
the i-th word occured in the document. In either case,
the input vectors are very poorly modeled by a con-
tinuous Gaussian distribution (which could take frac-
tional, or negative values). It is thus hardly surprising
that when sparse coding is applied to a self-taught
learning task for text, it only leads to small gains in
accuracy, even with huge amounts of unlabeled data;
in some cases, it can even hurt performance.

To address this problem, in this paper we generalize
the Gaussian probabilistic model behind sparse coding
in a principled way to “exponential family” of distri-
butions. This class of distributions is large enough
to include most commonly used distributions (includ-
ing the Gaussian, Bernoulli and Poisson distributions
among others), but also guarantees crucial proper-
ties that make efficient learning and inference possi-
ble (e.g., the maximum likelihood learning problem is
convex for any distribution in the family) (McCullagh
& Nelder, 1989). We call our model exponential family

sparse coding, and to differentiate it from the previous
model, we henceforth call that model Gaussian sparse

coding.

3. Exponential family sparse coding

Given a text document (input vector) x, we use
the standard exponential family model: P (x|b, s) =
h(x) exp(ηT T (x) − a(η)) with the natural parameter
η =

∑

j bjsj . Here the functions h, T and a specify the
exact exponential family distribution being used (e.g.,

h(x) = e−‖x‖
2/2/(2π)

k/2
, T (x) = x, a(η) = ηT η/2 lead

to a Gaussian distribution with covariance I). This in-
cludes the Gaussian sparse coding model as a special
case, and we can now use a Poisson distribution if the
input is integer-valued, or a Bernoulli distribution if

the input is binary.

With this generative model, the basis vectors b can
again be learnt from unlabeled data by solving the
MAP optimization problem, or equivalently:2

min
B,{s(i)}

P

i

“

− log h(x(i))− s(i)T
BT T (x(i)) + a(Bs(i))

”

+β
P

i,j
|s

(i)
j |

s.t. ‖bj‖
2 ≤ c, ∀j = 1, ..., n. (1)

Inspite of the generalization, this problem is still con-
vex separately in b and s (though not jointly).3 This
again suggests an alternating minimization procedure
iterating the following two steps till convergence: (i)
fix the activations s, and compute the optimal basis
vectors B; and, (ii) fix these basis vectors B, and com-
pute the optimal activations s.

Step (i) involves a constrained optimization problem
over B with a differentiable objective function. We can
thus apply projective gradient descent updates, where
at each iteration we perform a line search along the
direction of the (negative) gradient, projecting onto
the feasible set before evaluating the objective func-
tion during the line search. In our case, the projection
operation is especially simple: we just need to rescale
each basis vector to have norm c if its norm is greater
than c. In our experiments, we find that such a pro-
jective gradient descent scheme is sufficiently fast for
basis learning. We thus focus now on the algorithm
for computing the optimal activations in Step (ii).

Step (ii) computes the optimal activation s given
fixed basis vectors. The resulting problem involves
a non-differentiable L1-regularized objective function,
for which several sophisticated algorithms have been
developed, including specialized interior point meth-
ods (Koh et al., 2007) and quasi-Newton methods (An-
drew & Gao, 2007; Yu et al., 2008). When used for
computing activations with 1000 basis vectors, these
methods find the optimal solution in a few seconds per

unlabeled example. Since we often need to solve for
tens of thousands of unlabeled examples repeatedly in
the inner loop of the overall alternating minimization
procedure, these solvers turn out to be too slow for
high-dimensional problems with many basis vectors.
We now present an alternative, efficient algorithm for
computing the activations.

4. Computing optimal activations

We first note that since the optimal values for the ac-
tivation vectors s(i) do not depend on each other, and
can be optimized separately, it is sufficient to consider

2We use matrix notation B = [b1b2 . . . bn].
3This follows from the fact that a(η) must be convex in

η (McCullagh & Nelder, 1989).
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the following optimization problem for a single input
x and its activation vector s:

mins ℓ(s) + β‖s‖1 (2)

where s corresponds to a vector of activations, and ℓ(s)
is a specific convex function of s.

In the case of Gaussian sparse coding, ℓ(s) is simply
a quadratic function, and the optimization problem
is an L1-regularized least squares problem that can
be solved efficiently (Efron et al., 2004; Lee et al.,
2007). This suggests an iterative algorithm for gen-
eral exponential family distributions: at each itera-
tion, we compute a local quadratic approximation ℓ̂(s)
to the function ℓ(s), and optimize the objective func-

tion ℓ̂(s) + β‖s‖1 instead.4 Using a similar insight,
Lee et al. proposed the IRLS-LARS algorithm for the
case of L1-regularized logistic regression, using Efron
et al.’s LARS algorithm in the inner loop to solve the
approximated problem.

This method can be applied to other L1-regularized
optimization problems for which a local quadratic ap-
proximation can be efficiently computed. Indeed, for
the case of the L1-regularized exponential family in
Equation (1), we can show that the local quadratic
approximation at a point s is given by:

ℓ̂(s′) =
∥

∥Λ1/2Bs′ − Λ1/2z
∥

∥

2
(3)

where Λii = a′′ ((Bs)i) for a diagonal matrix Λ, and
z = Λ−1(T (x)− a′(Bs)) + Bs.5

We further note that if the objective function ℓ(s) is
reasonably approximated by a quadratic function, the
solutions to the successive quadratic approximations
should be close to each other. However, the LARS al-
gorithm used in IRLS-LARS cannot be initialized at
an arbitrary point, and thus has to rediscover the solu-
tion from scratch while solving each successive approx-
imation. On the other hand, the “feature-sign search”
algorithm (originally proposed in the context of Gaus-
sian sparse coding) can be initialized at an arbitrary
point (Lee et al., 2007), and can thus potentially solve
the successive approximations much faster. We pro-
pose to use the feature-sign search algorithm to opti-
mize each quadratic approximation.

The final algorithm, which we call IRLS-FS, is de-
scribed below. The algorithm is guaranteed to con-
verge to the global optimum in a finite number of it-
erations. (Proof similar to IRLS-LARS.)

4This procedure is an instance of a more general method
that is sometimes called Iteratively Reweighted Least
Squares (IRLS) in the literature (Green, 1984).

5To show that this is the local quadratic approximation
to ℓ(s), it suffices to show that this has the same function

Algorithm 1: IRLS-FS algorithm

Input: B ∈ R
k×n: matrix, x ∈ R

k: vector.
Initialize s := ~0.
while stopping criterion is not satisfied do

Λii := a′′ ((Bs)i) (for diagonal matrix Λ)
z := Λ−1(T (x)− a′(Bs)) + Bs.
Initializing feature-sign search at s, compute:

ŝ := arg mins′

∥

∥Λ1/2Bs′ − Λ1/2z
∥

∥

2
+ β‖s′‖1

Set s := (1− t)s + tŝ, where t is found by a back-
tracking line-search that minimizes the original
objective function in problem (1). (See Boyd &
Vandenberghe, 2004 for details)

end while

5. Computational Efficiency

We compare the IRLS-FS algorithm against state-
of-the-art algorithms for optimizing the activations,
focusing on the case of binary sparse coding (i.e.,
x ∈ {0, 1}k). This case is especially interesting be-
cause this leads to an L1-regularized logistic regression
problem.6 This problem is of general interest (e.g., see
Ng, 2004), and customized algorithms have also been
developed for it.

We compare the algorithm with four recent algo-
rithms: the IRLS-LARS algorithm (Lee et al., 2006)
and the l1-logreg interior point method (Koh et al.,
2007) specifically for logistic regression, and the OWL-
QN (Andrew & Gao, 2007) and SubLBFGS (Yu et al.,
2008) algorithms for L1-regularized convex optimiza-
tion problems.7 All algorithms were evaluated on
nine L1-regularized logistic regression problems, which
arise when computing activations for text data. The
sparsity parameter β was set to produce roughly 20
nonzero activations per example on average. We mea-
sured the running time taken by each algorithm to
converge within a specified tolerance of the optimal

value, gradient and Hessian at s. Indeed, we have ∇ℓ =

∇ℓ̂ = −BT T (x) + BT a′(Bs), and ∇2ℓ = ∇2ℓ̂ = BT ΛB.
6We note that in each L1-regularized optimization prob-

lem produced by exponential family sparse coding, the
number of “features” is equal to the number of basis vectors
used, but is independent of the dimensionality of inputs x
in the original problem. For example, when applied to text,
the number of “features” is equal to the number of basis
vectors, but is independent of the number of words in the
vocabulary, which could be large.

7Baseline algorithms: Lee et al. show that IRLS-LARS
outperforms several previous algorithms, including graft-
ing (Perkins & Theiler, 2003), SCGIS (Goodman, 2004),
GenLasso (Roth, 2004) and Gl1ce (Lokhorst, 1999). IRLS-
FS, IRLS-LARS and l1-logreg were implemented in Mat-
lab, and OWL-QN and SubLBFGS were compiled in C++
with optimization flags. Code for all baselines was obtained
from the respective authors.
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Dataset Small1 Small2 Small3 Medium1 Medium2 Medium3 Large1 Large2 Large3
IRLS-LARS 4.6 4.9 4.3 12.8 12.5 13.2 1131 1270 1214
l1-logreg 18.3 18.9 17.7 181 188 185 3277 3101 3013
OWL-QN 7.1 7.0 10.3 27.1 31.4 25.6 1018 739 906
SubLBFGS 33.0 22.3 23.1 101 142 57.2 1953 2717 1627
IRLS-FS 2.5 2.3 2.2 5.3 5.5 5.4 117 108 109

Table 1: Total running time in seconds for computing activations for 50 input examples for 9 problems (one per column).
There are 3 problems each of 3 different sizes, and they are labeled Small1 to Small3, Medium1 to Medium3, or Large1
to Large3 based on the size of the problem. The Small problems had 200 basis vectors and input dimension 369, Med
problems had 600 basis vectors and dimension 369, and Large problems had 1000 basis vectors and dimension 3891.

Dataset Col Alon Duln Duer Arr Mad Hep Spf Prom Wbc Ion Spl Spc Spam
IRLS-LARS 2.1 3.3 6.2 35.6 2.2 25.6 0.5 5.0 2.1 5.0 3.5 18.3 2.6 57.8
l1-logreg 18.3 16.8 13.6 14.4 34.8 509 1.0 3.0 2.0 3.8 2.7 12.8 2.0 37.1

OWL-QN 27.4 29.4 16.9 79.6 7.7 634 0.1 3.4 0.4 13.4 1.9 7.1 0.9 39.3
SubLBFGS 114 80.8 60.5 311 24.3 261 0.7 9.3 2.7 14.4 4.5 13.4 2.1 43.0
IRLS-FS 1.9 1.9 2.5 7.1 1.5 14.0 0.3 2.3 1.3 2.9 2.0 10.4 1.9 50.8

Table 2: Total running time in seconds for 50 trials of learning parameters of various L1-regularized logistic regression
benchmarks. The sparsity parameter β was picked to optimize generalization error of the resulting classifier. The datasets
are ordered from left-to-right by increasing fraction of nonzero parameter values at the optimal solution (e.g., the problem
Col had 0.2% nonzeros, Mad: 3.2%, Hep: 26.3%, Spam: 66.7%).

objective value.8

Table 1 shows the running times computed over 50
trials. IRLS-FS outperforms the other algorithms on
this task, showing that it is well-suited to exponential
family sparse coding. When a large number of basis
vectors are used (while keeping the number of nonzero
activations fixed), IRLS-FS can be 5 to 7 times faster
than the best baseline algorithm.

This poses the question: can IRLS-FS be a useful al-
gorithm for general L1-regularized optimization prob-
lems (not necessarily ones generated by the sparse cod-
ing problem)? We compare the algorithms above on 14
moderate-size benchmark classification datasets, and
apply L1-regularized logistic regression to them.9 The
value of β on each benchmark was picked to optimize
the generalization error of the resulting logistic regres-
sion classifier; unlike the earlier experiment, β was not
set explicitly to obtain sparse solutions. Table 2 shows
the running time of the algorithms to compute the op-
timal parameters. IRLS-FS outperforms the other al-
gorithms on 8 out of 14 of these benchmark datasets;
as expected, it performs best when the optimal param-
eters have few nonzero values.

8Details: Since IRLS-LARS solves the dual or Lasso
version of our problem (i.e., with a constraint C on the
L1 norm of the activations rather than a penalty β), we
follow Lee et al.’s method of using the KKT conditions to
convert between the constraint value C and the equivalent
penalty β for that problem. We ran all algorithms until
they reached an objective value of (1 + ǫ)fopt where fopt

is the optimal objective value (we used ǫ = 10−6).
9These datasets were used to evaluate IRLS-LARS and

were obtained from the authors (Lee et al., 2006).

6. Self-taught learning for text

documents

The model presented in this paper generalizes Gaus-
sian sparse coding. It is also closely related to expo-
nential family PCA (Collins et al., 2001), which corre-
sponds to setting the sparsity penalty β to zero, and
additionally constraining the basis matrix B to have
orthogonal columns. We now show that the exponen-
tial family sparse coding model can produce better
self-taught learning performance than either of these
previous methods.

We apply our algorithm to two self-taught learning
problems in text classification: one using binary-
valued input vectors x ∈ {0, 1}k, and another using
integer-valued (word count) vectors x ∈ {0, 1, 2, . . . }k.

We constructed five different webpage classification
problems, and a newsgroup classification problem. We
used 470,000 unlabeled news articles (from the Reuters
corpus) to learn basis vectors according to the binary
and Poisson sparse coding models.10 Table 3 gives ex-

10Details: The webpage classification problems were cre-
ated using subcategories of the Arts, Business, Health,
Recreation and Sports categories of the DMOZ hierar-
chy. Each of them consisted of 10 separate binary clas-
sification problems over a 500 word vocabulary, with stop-
word removal and stemming. The newsgroup classification
problem consisted of 10 binary classification problems con-
structed using the 20 newsgroups dataset. We used 600
basis vectors, and picked β to achieve roughly 10% nonzero
activations. For learning, we used stochastic updates with
mini-batches of 2000 randomly sampled examples, and as-
sumed that the basis vectors had converged when the ob-
jective function did not decrease for 10 consecutive mini-
batch iterations.
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free share pharmaceut estat subscrib
market exchange drug real online
polici stock product sale servic
power secur share loss server
peopl commiss stock loan databas
paint actor novel audio singer
pictur actress literari video pop

portrait film poet dvd releas
museum comedi fiction digit fan

rule star univers softwar busi

Table 3: Ten examples of basis vectors trained on the
Reuters data using Poisson sparse coding. Each group of
five words were the most highly active words (i.e., had
the highest weight) for some basis vector. Thus, each set
of five words is judged to be highly correlated with each
other. The top half contains basis vectors over the vocabu-
lary for the Business category, the bottom half for the Arts
category.

amples of basis vectors that were learned by applying
Poisson sparse coding. Basis vectors appeared to en-
code related words and capture various “topics.”

Using the learnt basis vectors, we computed features
for each classification task using the binary and Pois-
son sparse coding model. We call our model “Ex-
pSC” and compare against several baselines: the raw
words themselves (“Raw”), Gaussian sparse coding
(“GSC”), exponential family PCA with the same bi-
nary or Poisson exponential family assumption (“Exp-
PCA”), and also Latent Dirichlet Allocation (LDA),
a widely-known topic model for text documents (Blei
et al., 2002). All baselines (except the raw features)
were trained using the same unlabeled data as our
model. We also consider combinations of the raw
word features with the other types of features (e.g.,
“Raw+ExpSC” indicates a combination of the raw fea-
tures and the ExpSC features). All features were then
evaluated using standard supervised-learning classi-
fiers over 100 trials each for 4, 10 and 20 training ex-
amples.11

Figure 1 shows the classification results obtained for
various training set sizes. The left 6 figures show re-
sults for Poisson sparse coding with varying numbers
of training examples on the x-axis; the right 6 figures
show results for binary sparse coding. Poisson and bi-
nary sparse coding reduce error significantly over the
raw features in five and four out of six tasks respec-

11To evaluate the dependency of our results on the choice
of classifier, we first evaluated many generic classifiers in-
cluding SVM, Gaussian discriminant analysis (GDA), ker-
nel dependency estimation (KDE), KNN, decision trees,
etc; then, we chose the three best classifiers (GDA, KDE,
and SVM) for the raw bag-of-words features. We report
average results of the best performing classifier for each
feature. We picked the β value used for computing the
features by cross-validation. We verified that tuning the
classifier hyperparameters by cross-validation does not sig-
nificantly affect the results.

tively. The results for Poisson sparse coding are par-
ticularly striking, showing 20-30% error reduction in
some cases.

Table 4 shows the average test error over all problems
for the binary and Poisson case. The exponential fam-
ily sparse coding features alone frequently outperform
the other features, and produce slightly better results
when used in combination with the raw features (Ex-
pSC+Raw). The other three methods for using unla-
beled data (GSC, ExpPCA, LDA) perform poorly in
many cases.

Discussion

In this paper, we present a general method for self-
taught learning, that extends previous models in a
natural way. The extensions can still be solved effi-
ciently using the IRLS-FS algorithm, which we show
to be an efficient algorithm for medium-sized L1-
regularized learning problems with sparse optimal so-
lutions. We have shown that our model achieves better
self-taught learning performance than Gaussian sparse
coding or exponential family PCA. Overall, our re-
sults suggest that exponential family sparse coding can
learn high-level representations of documents from un-
labeled data, and that this prior knowledge is useful
in document classification problems. We believe this
model could be applied more generally to other lan-
guage problems, including information retrieval and
word sense disambiguation, where large amounts of
unlabeled data are available.
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