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Abstract

Although discriminatively-trained classifiers are usually more accurate
when labeled training data is abundant, previous work has shown that
when training data is limited, generative classifiers can out-perform
them. This paper describes a hybrid model in which a high-dimensional
subset of the parameters are trained to maximize generative likelihood,
and another, small, subset of parameters are trained to maximize con-
ditional likelihood. We give a sample complexity bound showing that
in order to fit the discriminative parameters well, the number of train-
ing examples required depends only logarithmically on the number of
feature occurrences and feature set size. Experimental results show that
hybrid models can provide lower test error than either their purely gen-
erative or purely discriminative counterparts, and can produce better ac-
curacy/coverage curves than naive Bayes or logistic regression. We also
discuss several advantages of hybrid models, and advocate further work
in this area.

1 Introduction

Generative classifiers learn a model of the joint probability, p(x, y), of the inputs x and the
label y, and make their predictions by using Bayes rules to calculate p(y|x), and then pick-
ing the most likely label y. In contrast, discriminative classifiers model the posterior p(y|x)
directly. It is widely believed that for many application domains, discriminative classifiers
often achieve higher test set accuracy than generative classifiers (e.g., [6, 4, 14]). Nonethe-
less, generative classifiers also have several advantages, among them straightforward EM
methods for handling missing data, and better performance when training set sizes are
small. Specifically, it has been shown that a simple generative classifier (naive Bayes)
outperforms its conditionally-trained, discriminative counterpart (logistic regression) when
the amount of available labeled training data is small [11].
In an effort to obtain the best of both worlds, this paper explores a class of hybrid models
for supervised learning that are partly generative and partly discriminative. In these models,
a large subset of the parameters are trained to maximize the generative, joint probability
of the inputs and outputs of the supervised learning task; another, much smaller, subset of
the parameters are discriminatively trained to maximize the conditional probability of the
outputs given the inputs.
Following Ng and Jordan [11], and motivated by an application in text classification as well
as the desire to begin by exploring a simple, pure form of a hybrid algorithm, we describe



and give results with logistic regression, naive Bayes, and a hybrid based on both. We
also introduce two natural by-products of the hybrid model. First, a scheme for allowing
different partitions of the variables to contribute more or less strongly to the classification
decision—for an email classification example, modeling the text in the subject line and
message body separately, with learned weights for relative contribution. Second, a method
for improving accuracy/coverage curves of models that make incorrect independence as-
sumptions, such as naive Bayes.
We also prove a sample complexity result in which the number of examples needed to fit the
discriminative parameters increases only as the logarithm of the vocabulary size and docu-
ment length. In experimental results we show that the hybrid model achieves significantly
more accurate classification than either the purely generative or the purely discriminative
approaches. We demonstrate that the hybrid model produces class posterior probabilities
that better reflect empirical error rates, and as a result, improved accuracy/coverage curves.

2 The Model

We begin by briefly reviewing the multinomial naive Bayes classifier applied to text cate-
gorization [10], and then describe our hybrid model and its relation to logistic regression.
Let Y = {0, 1} be the set of possible labels for a document classification task, and let
W = {w1, w2, . . . , w|W|} be a dictionary of words. A document ofN words is represented
by the vector X = (X1, X2, . . . , XN ) of length N . The ith word in the document is
Xi ∈ W . Note that N can vary for different documents. The multinomial naive Bayes
model assumes that the label Y is chosen from some prior distribution P (Y = ·), the
length N is drawn from some distribution P (N = ·) independently of the label, and each
word Xi is drawn independently from some distribution P (W = ·|Y ) over the dictionary.
Thus, we have1:

P (X = x, Y = y) = P (Y = y)P (N = n)
∏n

i=1 P (W = xi|Y = y) (1)

Since the length n of the document does not depend on the label and therefore does not
play a significant role, we leave it out of our subsequent derivations.

The parameters in the naive Bayes model are P̂ (Y ) and P̂ (W |Y ) (our estimates of P (Y )
and P (W |Y )). They are set to maximize the joint (penalized) log-likelihood of the x and
y pairs in a labeled training set, M = {(x(i), y(i))}m

i=1. Let n(i) be the length of document
x(i). Specifically, for any k ∈ {0, 1}, we have:

P̂ (Y = k) = 1
m

∑m
i=1 1{y(i) = k} (2)

P̂ (W = wi|Y = k) =

∑
m

i=1

∑
n(i)

j=1
1{x

(i)

j
=wi, y(i)=k}+1

∑
m

i=1
n(i)1{y(i)=k}+|W|

, (3)

where 1{·} is the indicator function (1{True} = 1,1{False}=0), and we have applied
Laplace (add-one) smoothing in obtaining the estimates of the word probabilities. Using
Bayes rule, we obtain the estimated class posterior probabilities for a new document as:

P̂ (Y = 1|X = x) = P̂ (X=x|Y =1)P̂ (Y =1)∑

y∈Y
P̂ (X=x|Y =y)P̂ (Y =y)

where
P̂ (X = x|Y = y) =

∏n
i=1 P̂ (W = xi|Y = y). (4)

The predicted class for the new document is then simply arg maxy∈Y P̂ (Y = y|X = x).
In many text classification applications, the documents involved consist of several disjoint
regions that may have different dependencies with the document label. For example, a

1We adopt the notational convention that upper-case is used to denote random variables, and
lower-case is used to denote particular values taken by the random variables.



USENET news posting can be considered to consist of a subject region and a body region.2

Because of the strong assumptions in its model, naive Bayes treats the words in the different
regions of a document in exactly the same way, ignoring the fact that perhaps words in a
particular region (such as words in the subject) might be more “important.” Further, it also
tends to allow the words in the longer region to dominate. (Explained below.)
In the sequel, we assume that every input document X can be naturally divided into R
regions X1, X2, . . . , XR. Note that R can be just 1. The regions are of variable lengths
N1, N2, . . . , NR. For the sake of conciseness and clarity, in the following discussion we
will focus on the case of R = 2 regions, the generalization offering no difficulties. Thus,
the document probability in Equation (4) is now replaced with:

P̂ (X = x|Y = y) = P̂ (X1 = x1|Y = y)P̂ (X2 = x2|Y = y) (5)

=
∏n1

i=1 P̂ (W = x1
i |Y = y)

∏n2

i=1 P̂ (W = x2
i |Y = y) (6)

Here, xj
i denotes the ith word in the jth region. It is straightforward to see that naive Bayes

will predict y = 1 if
∑n1

i=1 log P̂ (W = x1
i |Y = 1) +

∑n2

i=1 log P̂ (W = x2
i |Y = 1) + log P̂ (Y = 1) ≥

∑n1

i=1 log P̂ (W = x1
i |Y = 0) +

∑n2

i=1 log P̂ (W = x2
i |Y = 0) + log P̂ (Y = 0)

and predict y = 0 otherwise. In an email or USENET news classification problem, if
the first region is the subject, and the second region is the message body, then n2 � n1,
since message bodies are usually much longer than subjects. Thus, in the equation above,
the message body contributes to many more terms in both the left and right sides of the
summation, and the result of the “≥” test will be largely determined by the message body
(with the message subject essentially ignored or otherwise having very little effect).
Given the importance and informativeness of message subjects, this suggests that we might
obtain better performance than the basic naive Bayes classifier by considering a modi-
fied algorithm that assigns different “weights” to different regions and normalizes for the
length of the regions. Specifically, consider making a prediction using instead the modified
inequality test:
θ1

n1

∑n1

i=1 log P̂ (W = x1
i |Y = 1) + θ2

n2

∑n2

i=1 log P̂ (W = x2
i |Y = 1) + log P̂ (Y = 1) ≥

θ1

n1

∑n1

i=1 log P̂ (W = x1
i |Y = 0) + θ2

n2

∑n2

i=1 log P̂ (W = x2
i |Y = 0) + log P̂ (Y = 0)

Here, the vector of parameters θ = (θ1, θ2) controls the relative “weighting” between the
message subjects and bodies, and will be fit discriminatively. Specifically, we will model
the class posteriors, which we denote by P̂θ to make explicit the dependence on θ, as3

P̂θ(y|x) = P̂ (y)P̂ (x1|y)
θ1
n1 P̂ (x2|y)

θ2
n2

P̂ (Y =0)P̂ (x1|Y =0)
θ1
n1 P̂ (x2|Y =0)

θ2
n2 +P̂ (Y =1)P̂ (x1|Y =1)

θ1
n1 P̂ (x2|Y =1)

θ2
n2

(7)

We had previously motivated our model as taking into account different weights for differ-
ent parts of the document. A second reason for using this model is that the independence
assumption for naive Bayes is too strong. Specifically, with a document of length n, the
classifier “assumes” that it has n completely independent pieces of evidence supporting its
conclusion about the document’s label. Putting nr in the denominator of the exponent as
a normalization factor can be viewed as a way of counteracting the overly strong indepen-
dence assumptions.4

2Other possible text classification examples include: Emails consisting of subject and body; tech-
nical papers consisting of title, abstract, and body; web pages consisting of title, headings, and body.

3When it is clear from the context, we will sometimes replace P (X = x|Y = y), P (Y = y|X =
x), P (W = xi|Y = y), etc. by their shorthand forms P (x|y), P (y|x), P (xi|y), etc.

4θr can also be viewed as an “effective region length” parameter, where we assume that region r
of the document can be treated as only θr independent pieces of observation. For example, note that
if each region r of the document has θr words exactly, then this model reduces to naive Bayes.



After some simple manipulations, we obtain the following expression for P̂θ(Y = 1|x):

P̂θ(Y = 1|x) = 1
1+exp(−a−θ1b1−...−θRbR) (8)

where a = log P̂ (Y =1)

P̂ (Y =0)
and br = 1

nr
(log P̂ (xr|Y =1)

P̂ (xr|Y =0)
). With this formulation for P̂θ(y|x),

we see that it is very similar to the form of the class posteriors used by logistic regression,
the only difference being that in this case a is a constant calculated from the estimated class
priors. To make the parallel to logistic regression complete, we define b0 = 1, redefine θ
as θ = (θ0, θ1, θ2), and define a new class posterior

P̂θ(Y = 1|x) = 1
1+exp(−θT b) (9)

Throughout the derivation, we had assumed that the parameters P̂ (x|y) were fit gener-
atively as in Equation 3 (and br is in turn derived from these parameters as described
previously above). It therefore remains only to specify how θ is chosen. One method
would be to pick θ by maximizing the conditional log-likelihood of the training set
M = {x(i), y(i)}m

i=1:

θ = argmaxθ′

∑m
i=1 log P̂θ′(y(i)|x(i)) (10)

However, the word generation probabilities that were used to calculate b were also trained
fromM . This procedure therefore fits the parameters θ to the training data, using “features”
b that were also fit to the data. This leads to a biased estimator. Specifically, since what we
care about is the generalization performance of the algorithm, a better method is to pick θ to
maximize the log-likelihood of data that wasn’t used to calculate the “features” b, because
when we see a test example, we will not have had the luxury of incorporating information
from the test example into the b’s (cf. [15, 12]). This leads to the following “leave-one-out”
strategy of picking θ:

θ = argmaxθ′

∑m
i=1 log P̂θ′,−i(y

(i)|x(i)), (11)

where P̂θ̂,−i(y
(i)|x(i)) is as given in Equation (9), except that each br is computed from

word generation probabilities that were estimated with the ith training example of the train-
ing set held out. We note that optimizing this objective to find θ is still exactly the same
optimization problem as in logistic regresssion, and hence is convex and can be solved
efficiently.

The predicted label for a new document under this scheme is just arg maxy∈Y P̂θ(y|x). We
call this scheme the normalized hybrid algorithm. For the sake of comparison, we will also
consider a related scheme in which the exponents in Equation (7) are not normalized by
nr. In other words, we replace θr/nr there by just θr. We refer to this latter scheme as the
unnormalized hybrid algorithm.

3 Experimental Results

We now describe the results of experiments testing the effectiveness of our methods. All
experiments were run using pairs of newsgroups from the 20newsgroups dataset [8] of
USENET news postings. When parsing this data, we skipped everything in the USENET
headers except the subject line; numbers and email addresses were replaced by special
tokens NUMBER and EMAILADDR; and tokens were formed after stemming.
In each experiment, we compare the performance of the basic naive Bayes algorithm
against the normalized hybrid algorithm and logistic regression with Gaussian priors on
the parameters [6]. All results reported in this section are averages over 10 random train-
test splits.
Figures 1 plots the average test error of the various algorithms versus training set size for
classifying pairs of newsgroups. We find that in every experiment, for the training set sizes
considered, the normalized hybrid algorithm with R = 2 has test error that is either the
lowest or very near the lowest among all the algorithms. In particular, it almost always
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Figure 1: Plots of test error vs training size for several different pairs of newsgroups. Red
dashed line is logistic regression; blue dotted line is standard naive Bayes; green solid
line is hybrid algorithm. (Colors where available.) ( If more training data were available,
logistic regression would presumably out-perform naive Bayes; cf. [11, 6].)

outperforms the basic naive Bayes algorithm. The difference in performance is especially
dramatic for small training sets.
Although these results are not shown here, the hybrid algorithm with R = 2 (breaking the
document into two regions) outperforms R = 1. Further, the normalized version of the
hybrid algorithm generally outperforms the unnormalized version.

4 Theoretical Results

In this section, we give a distribution free uniform convergence bound for our algorithm.
Classical learning theory and VC theory indicate that, given a discriminative model with
a small number of parameters, only a small amount of training data should be required
to fit the parameters “well” [14]. In our model, a large number of parameters P̂ are fit
generatively, but only a small number (the θ’s) are fit discriminatively. We would like
to show that only a small training set is required to fit the discriminative parameters θ.5

However, standard uniform convergence results do not apply to our problem, because the
“features” bi given to the discriminative logistic regression component also depend on the
training set. Further, the θi’s are fit using the leave-one-out training procedure, so that every
pair of training examples is actually dependent.
For our analysis, we assume the training set of size m is drawn i.i.d.from some distribution
D over X × Y . Although not necessary, for simplicity we assume that each document
has the same total number of words n =

∑R
i=1 ni, though the lengths of the individual

regions may vary. (It also suffices to have an upper- and a lower-bound on document
length.) Finally, we also assume that each word occurs at most Cmax times in a single

5For a result showing that naive Bayes’ generatively fit parameters (albeit one using a different
event model) converge to their population (asymptotic) values after a number of training examples
that depends logarithmically on the size of the number of features, also see [11].



document, and that the distribution D from which training examples are drawn satisfies
ρmin ≤ P (y = 1) ≤ 1 − ρmin, for some fixed ρmin > 0.
Note that we do not assume that the “naive Bayes assumption” (that words are conditionally
independent given the class label) holds. Specifically, even when the naive Bayes assump-
tion does not hold, the naive Bayes algorithm (as well as our hybrid algorithm) can still be
applied, and our results apply to this setting.
Given a set M of m training examples, for a particular setting of the parameter θ, the
expected log likelihood of a randomly drawn test example is:

εM (θ) = E(x,y)∼D log P̂θ(y|x) (12)

where P̂θ is the probability model trained on M as described in the previous section, using
parameters P̂ fit to the entire training set. Our algorithm uses a leave-one-out estimate of
the true log likelihood, which we call the leave-one-out log likelihood:

ε̂M
−1(θ) = 1

m

∑m
i=1 log P̂θ,−i(y

(i)|x(i)) (13)

where P̂θ,−i represents the probability model trained with the ith example left out.

We would like to choose θ to maximize εM , but we do not know εM . Now, it is well-known
that if we have some estimate ε̂ of a generalization error measure ε, and if |ε̂(θ)−ε(θ)| ≤ ε
for all θ, then optimizing ε̂ will result in a value for θ that comes within 2ε of the best
possible value for ε(θ) [14]. Thus, in order to show that optimizing ε̂M

−1 is a good “proxy”
for optimizing εM , we only need to show that ε̂M

−1(θ) is uniformly close to εM (θ). We
have:

Theorem 1 Under the previous set of assumptions, in order to ensure that with probability
at least 1 − δ, we have |εM (θ) − ε̂M

−1(θ)| < ε for all parameters θ such that ||θ||∞ ≤ η, it
suffices that m = O(poly(1/δ, 1/ε, logn, log |W|, R, η)R).

The full proof of this result is fairly lengthy, and is deferred to the Appendix [13]. full
version of this paper [13] (available online). From the theorem, the number of training
examplesm required to fit the θ parameters depends only on the logarithms of the document
length n and the vocabulary size |W|. In our bound, there is an exponential dependence on
R; however, from our experience,R does not need to be too large for significantly improved
performance. In fact, our experimental results demonstrate good performance for R = 2.

5 Calibration Curves

We now consider a second application of these ideas, to a text classification setting where
the data is not naturally split into different regions (equivalently, where R = 1). In this
setting we cannot use the “reweighting” power of the hybrid algorithm to reduce classifi-
cation error. But, we will see that, by giving better class posteriors, our method still gives
improved performance as measured on accuracy/coverage curves.
An accuracy/coverage curve shows the accuracy (fraction correct) of a classifier if it is
asked only to provide x% coverage—that is, if it is asked only to label the x% of the test
data on which it is most confident. Accuracy/coverage curves towards the upper-right of the
graph mean high accuracy even when the coverage is high, and therefore good performance.
Accuracy value at coverage 100% is just the normal classification error. In settings where
both human and computer label documents, accuracy/coverage curves play a central role
in determining how much data has to be labeled by humans. They are also indicative of
the quality of a classifier’s class posteriors, because a classifier with better class posteriors
would be able to better judge which x% of the test data it should be most confident on, and
achieve higher accuracy when it chooses to label that x% of the data.
Figure 2 shows accuracy/coverage curves for classifying several pairs of newsgroups from
the 20newsgroups dataset. Each plot is obtained by averaging the results of ten 50%/50%
random train/test splits. The normalized hybrid algorithm (R = 1) does significantly better
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Figure 2: Accuracy/Coverage curves for different pairs of newsgroups. Green solid line
is our normalized hybrid algorithm; black dash-dot line is naive Bayes; blue dotted line is
unnormalized hyrid, and red dashed line is logistic regression. (Colors where available.)

than naive Bayes, and has accuracy/coverage curves that are higher almost everywhere.
For example, in Figure 2a, the normalized hybrid algorithm with R = 1 has a coverage
of over 40% at 95% accuracy, while naive Bayes’ coverage is 0 for the same accuracy.
Also, the unnormalized algorithm has performance about the same as naive Bayes. Even in
examples where the various algorithms have comparable overall test error, the normalized
hybrid algorithm has significantly better accuracy/coverage.

6 Discussion and Related Work

This paper has described a hybrid generative/discriminative model, and presented experi-
mental results showing that a simple hybrid model can perform better than either its purely
generative or discriminative counterpart. Furthermore, we showed that in order to fit the
parameters θ of the model, only a small number of training examples is required.
There have been a number of previous efforts to modify naive Bayes for the purpose of
obtaining more empirically accurate posterior probabilities. Lewis and Gale [9] use logistic
regression to recalibrate naive Bayes posteriors in an active learning task. Their approach
is similar to the lower-performing unnormalized version of our algorithm, with only one
region. Bennett [1] studies the problem of using asymmetric parametric models to obtain
high quality probability estimates from the scores outputted by text classifiers such as naive
Bayes. Zadrozny and Elkan [16] describe a simple non-parametric method for calibrating
naive Bayes probability estimates. While these methods can obtain good class posteriors,
we note that in order to obtain better accuracy/coverage, it is not sufficient to take naive
Bayes’ output p(y|x) and find a monotone mapping from that to a set of hopefully better
class posteriors (e.g., [16]). Specifically, in order to obtain better accuracy/coverage, it is
also important to rearrange the confidence orderings that naive Bayes gives to documents
(which our method does because of the normalization).
Jaakkola and Haussler [3] describe a scheme in which the kernel for a discriminative clas-



sifier is extracted from a generative model. Perhaps the closest to our work, however, is
the commonly-used, simple “reweighting” of the language model and acoustic model in
speech recognition systems (e.g., [5]). Each of the two models is trained generatively; then
a single weight parameter is set using hold-out cross-validation.
In related work, there are also a number of theoretical results on the quality of leave-one-
out estimates of generalization error. Some examples include [7, 2]. (See [7] for a brief
survey.) Those results tend to be for specialized models or have strong assumptions on the
model, and to our knowledge do not apply to our setting, in which we are also trying to fit
the parameters θ.
In closing, we have presented one hybrid generative/discriminative algorithm that appears
to do well on a number of problems. We suggest that future research in this area is poised
to bear much fruit. Some possible future work includes: automatically determining which
parameters to train generatively and which discriminatively; training methods for more
complex models with latent variables, that require EM to estimate both sets of parameters;
methods for taking advantage of the hybrid nature of these models to better incorporate
domain knowledge; handling missing data; and support for semi-supervised learning.
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7 Appendix

Below we present the complete proof of our theoretical results. Lemmas 2 and 3 charac-
terize the change in parameters as more examples are added to the training set. Corollary 4
uses these to derive a result that will be very useful in our analysis.
Theorem 5 presents the uniform convergence result for fixed parameters θ, and forms the
core of our overall proof. Finally, the general uniform convergence bounds and the sample
complexity bounds are presented.

Lemma 2 Let φ̂M
j|y=k ≡ log P̂M (wj |y = k) be the logarithm of the probability estimated

by Naive Bayes on the training set M . Given another set of examples S drawn from the
same distribution as M, suppose the parameters are first estimated using M , and again
using M ∪ S. Then, with m = |M | > 1, s = |S|, for any 0 < c < 1/2, and for constants
T1...4 (possibly depending on c),

|φ̂M
j|y=k − φ̂M∪S

j|y=k | < T1
s

m1−c
∀1 ≤ j ≤ |W|, k ∈ {0, 1} (14)

holds with probability at least (1 − max(2 exp(−T2m
1−2c), 2 exp(−T3s)))

Also, a weaker but deterministic bound exists:

|φ̂M
j|y=k − φ̂M∪S

j|y=k | < log(T4ns
2) ∀1 ≤ j ≤ |W|, k ∈ {0, 1} (15)

Proof: Let Cj,A = Total number of occurrences of wj in documents from set A.
Define sets Mk and Sk to contain all documents from class k in sets M and S respectively,
and let mk = |Mk|, sk = |Sk|. Then, by definition:

φM
j|y=k = log

(
Cj,Mk

+ 1

nmk + |W|

)

Putting this into our expression, rewriting and using the triangle inequality:

∆ = |φ̂M
j|y=k − φ̂M∪S

j|y=k | = | log

(
Cj,Mk

+ 1

nmk + |W|

)

− log

(
Cj,Mk

+ Cj,Sk
+ 1

n(mk + sk) + |W|

)

|

= | log

(

1 +
nsk

nmk + |W|

)

− log

(

1 +
Cj,Sk

Cj,Mk
+ 1

)

|

≤ log

(

1 +
nsk

nmk + |W|

)

+ log

(

1 +
Cj,Sk

Cj,Mk
+ 1

)

The deterministic bound follows directly from here as sk < s, |W| ≥ 1 and Cj,Sk
≤

Cmaxs. Using the inequality log(1 + x) ≤ x for x ≥ 0:

∆ ≤
nsk

nmk + |W|
+

Cj,Sk

Cj,Mk
+ 1

<
s

ρminm
+

Cj,Sk

Cj,Mk
+ 1



where the last statement holds from the Chernoff bound with probability at least (1 −
2 exp(−2ρ2

minm)). It therefore suffices to prove a high probability bound on the relative
number of occurrences of wj in Sk and Mk. Consider two cases:
Case I: P (wj occurs at least once | document class is y = k) ≥ 1/mc

Intuitively, wj occurs frequently, and we expect Cj,Mk
to be high. Since each document is

independent, we use the Chernoff bound and the high probability bound on mk ≥ ρminm
(as earlier) to get:

P (# documents in Mk containing wj ≤ mk/2m
c) ≤ 2 exp(−T2m

1−2c) = ε1

for some constant T2 (both probabilities can be combined with a union bound) . Thus, w.p.
at least 1 − ε1, Cj,Mk

≥ mk/2m
c ≥ ρminm/2m

c again from the Chernoff bound for mk

(and this can be incorporated into the probability without changing its form). Since we also
have Cj,Sk

≤ Cmaxs, and c < 1/2 we get the required probability bound in this case.
Case II: P (wj occurs at least once | document class is y = k) < 1/mc

Intuitively,wj is rare enough forCj,Sk
to be zero with high probability. Using the Chernoff

bound and the high probability bound that sk ≥ ρmins:

P (# documents in Sk containing wj ≥ 1) < 2 exp(−T3s) = ε2

where T3 depends on c (and both probabilities can be combined with a union bound). Thus,
w.p. at least 1 − ε2, Cj,Sk

= 0 and the bound works in this case as well. 2

Our next lemma is a bound on the variation in the log likelihood ε̂(θ) of a particular example
(x, y) as the Naive Bayes probabilities φ̂j|y=k are varied.

Lemma 3 Suppose our algorithm is used with R parameters θ = {θ1, θ2, .., θR}, such that
||θ||∞ ≤ η, to classify a new example (x, y). Let ε̂(x,y)(θ) = logP (y|x), where the Naive
Bayes probability estimates φ̂j|y=k ≡ log P̂ (wj |y = k) are used. If a single φ̂...|y=...

changes by at most D, then ε̂(x,y)(θ) changes by at most ηD. If each φ̂...|y=... changes by
at most D, then ε̂(x,y)(θ) changes by at most 2ηRD.

Proof: Without loss of generality, assume the new example y is in class 1. Using the
earlier notation and ψr

i|y=k = log P̂ (xr
i |y = k) , we rewrite ε̂(x,y)(θ) = log(1 + exp(H))

with:

H = −
θ1
n1

n1∑

i=1

ψ1
i|y=1 −

θ2
n2

n2∑

i=1

ψ2
i|y=1 − . . .+

θ1
n1

n1∑

i=1

ψ1
i|y=0 + . . .

Since dε̂(x,y)(θ)/dH = exp(H)/(1 + exp(H)) < 1, the change in ε̂(x,y)(θ) will be less
than the change in H .
Also, computing the absolute values of the derivative of H w.r.t each parameter ψ ...

...|y=...

and multiplying by D gives a bound on the maximum change in H when each parameter
changes by at mostD. Since n1, n2, . . . ≥ 1 , this gives the single parameter change bound.
When all parameters change, the contributions can be added:

Change in H ≤ (
|θ1|

n1
D)n1 + (

|θ2|

n2
D)n2 + . . .+ (

|θ1|

n1
D)n1 + . . .

≤ 2ηRD

Thus, the change in ε̂(x,y)(θ) is also bounded by this quantity. 2

Given a set M of m training examples drawn from a joint distribution D, the true log
likelihood of the model is:

εM (θ) = E(x,y)∼D logPM (y(i)|x(i)) (16)

where PM is the probability model trained on M . The following Corollary to Lemmas 2
and 3 will be useful.



Corollary 4 Suppose the parameters φ̂j|y=k ≡ log P̂ (wj |y = k) are estimated first from
the set of examplesA, and then from the set A∪B, where |B| = mt (t < 1), |A∪B| = m,
|A| = a = m − mt, and A, B are drawn from the same distribution D. For given
parameters θ with ||θ||∞ ≤ η, let the log likelihood of an example (x, y) drawn from D be
εA
(x,y)(θ) and εA∪B

(x,y)(θ) respectively. Then:

1. εA
(x,y)(θ) and εA∪B

(x,y)(θ) are close with high probability. Concretely, for 0 < c <

1/2, 0 < τ < 1− c− t and m large enough (m > Ω(log(nR)))

P (|εA
(x,y)(θ) − εA∪B

(x,y)(θ)| >
1

mτ
) < T5R

mt+τ

a1−c
(17)

holds for some constant T5.

2. The maximum possible difference is bounded at least as:

|εA
(x,y)(θ) − εA∪B

(x,y)(θ)| < 2ηR log(T4nm
2t) (18)

for some constant T4 > 0.

Proof: 1. Let F denote the fraction of φ̂’s that change more than D = T1m
t/a1−c (the

constant T1 from Lemma 2 is used here) when estimated on A and A ∪ B. Using Lemma
2, E[F ] ≤ ε = max(2 exp(−T2a

1−2c), 2 exp(−T3m
t)). From the Markov inequality,

P (F ≥ f) ≤ ε/f

Also, from Lemma 2, the change in any φ̂ is at most log(T4nm
2t).

Let ∆ε(θ) = |εA
(x,y)(θ) − εA∪B

(x,y)(θ)|. Using Lemma 3, the above bounds on the changes in

φ̂, and the fact that there are at most 2n parameters used for any document,

E[∆ε(θ)] ≤
ε

f
· 2ηR log(T4nm

2t) +
[
f · 2n · η log(T4nm

2t) + 2ηRD
]

With f = 1/mn, the Markov inequality applied to ∆ε(θ) yields (for m = Ω(log n)):

P (∆ε(θ) ≥
1

mτ
) ≤ ε · θ(m,n,R) + T5R

mt+τ

a1−c

where 0 < τ < 1, T5 is a constant and θ(m,n,R) is a polynomial of total degree less than
3 + τ . Since ε decreases exponentially with m, choosing m = Ω(log(nR)) leads to the
required probability bound.
2. This follows from Lemma 2 and Lemma 3. 2

Note that the above corollary applies to the likelihood of any example (x, y) as long as it is
drawn from the same distribution D. Thus, it also applies to the true log likelihoods εA(θ)
and εA∪B(θ) since they represent the expected value of the log likelihood.
Our algorithm uses an estimate of the true log likelihood, which we call the leave-one-out
log likelihood:

ε̂M
−1(θ) =

1

M

m∑

i=1

logPM
−i (y

(i)|x(i)) (19)

where PM
−i represents the probability model trained with training setM \{(x(i), y(i))}, i.e.,

the set M with the ith example left out.
The main result of this section is to show that the leave-one-out log likelihood is a “good”
estimate of the unknown true likelihood, irrespective of the underlying distribution D; and
the accuracy of the estimate increases “quickly” as more and more training examples are
provided.
We now present such a uniform convergence result for fixed parameters θ.

Theorem 5 (Uniform Convergence With Fixed Parameters) Suppose M is a set of
training examples {(x(i), y(i))}, 1 ≤ i ≤ m, drawn from D. The R model parameters



θ are fixed, with ||θ||∞ ≤ η. Then, the true log likelihood εM (θ), and the leave-one-out
log likelihood ε̂M

−1(θ) converge asymptotically. We prove a relation of the form:

P (|εM (θ) − ε̂M
−1(θ)| < 1/mν) > 1 − T

R3 log2(mn)

mθ
(20)

for constants T, ν, θ > 0 and m large enough (m > Ω(log(nR)). Thus the error tends to
zero as m→ ∞, with only a logarithmic dependence on document length n, and no direct
dependence on vocabulary size |W|.

Proof outline: Our proof roughly consists of the following steps:

• Split the m examples in the training set M into two parts A and B such that
|B| = mt for some 0 < t < 1. By construction, B is much smaller than M ,
but still contains many examples. Intuitively, we will use testing on the set B
as a bridge between testing on single examples (as in ε̂M

−1(θ)) and (hypothetical)
testing on infinitely many examples (as in εM (θ)).

• Show that (with high probability) training on A and testing on B produces a sim-
ilar log likelihood estimate (call it ε̃A,B(θ)) to training on A∪B and testing from
the distribution D itself (this latter value would be exactly εM (θ)).

• Show that (with high probability) training on A ∪ B with testing performed by
leave-one-out averaging over B produces a similar log likelihood estimate (call it
ε̂A,B−1(θ)) to training on A and testing on B (ε̃A,B(θ)).

• Use the above two to get a high probability and low error link between training on
M = A ∪ B with leave-one-out averaging over B (ε̂A,B−1(θ)) and εM (θ).

• Finally, consider disjoint ways of forming B in the first place, and average the
previous result over them to prove the theorem.

Proof: Split M into A and B, with |B| = mt.

• ε̃A,B(θ) ≈ εM (θ): First note that B is fairly large, and so testing on B gives
a good estimate of the true log likelihood after training on A. Mathematically,
a high probability bound is obtained using the Chernoff Bound. Combining this
with the result from Corollary 4 for τ > t/2 andm much larger than log(nR), we
get:

P (|ε̃A,B(θ) − εM (θ)| > 1/mτ) < T6R
mt+τ

a1−c

where a = m−mt and T6 is a constant. This gives a useful bound for τ < 1−c−t.
• ε̂A,B−1(θ) ≈ ε̃A,B(θ): The advantage here is that the tests are made on exactly

the same elements - those from B. Choose any element in B, call it Bi. For the
test on Bi, in one case parameters are estimated from A ∪ B \ {Bi} and in the
other case from A. Consider the difference in log likelihood for Bi in these two
cases. Corollary 4 gives a high probability bound on the difference, and also a
bound on the maximum difference6. Thus the expected value is bounded by:

E[|ε̂A,B−1(θ) − ε̃A,B(θ)|] < T5R
mt+τ

a1−c
· 2ηR log(T4nm

2t) +
2ηR

mτ

As before, applying the Markov inequality gives a high probability bound:

P (|ε̂A,B−1(θ) − ε̃A,B(θ)| > 1/mχ) < T7R
2m

t+τ+χ log(T4nm
2t)

a1−c
+

T8R

mτ−χ
︸ ︷︷ ︸

call this b
where a = m − mt and T7, T8 are constants. We get a useful bound when
χ < 1− c− t− τ and χ < τ .

6We require adding only (mt −1) new elements instead of the mt in Corollary 3, so this case can
only be better



• Combining the above two results, we can relate the true log likelihood with the
complete training set M to the log likelihood estimated by leave-one-out averag-
ing on the part B.

• Finally, consider them1−t disjoint ways of choosingB. Our overall leave-one-out
measure is simply the average of the leave-one-out averages over all these choices
of B. Again, bound the expected value, and apply the Markov inequality to get:

P (|εM (θ) − ε̂M
−1(θ)| > 1/mν) < b ·mν · 2ηR log(T4nm

2t) +
2ηR

mχ−ν

where we want ν < χ, χ+ ν < τ and θ = 1− c− t− τ−χ− ν > 0 to get useful
bounds. Now, we finally choose the values as, for example, ν = 1/20, χ = 1/10,
τ = 1/5, t = 1/20 and c = 1/20 to get a bound with ν = θ = 1/20.

2

Our proof is only intended to show the nature of dependence of the error on m, n, |W| and
R. The exact numbers can surely be improved by a tighter analysis.

Theorem 6 (Uniform Convergence) Suppose the Naive Bayes parameters are estimated
on a training set M . If we restrict the R parameters such that ||θ||∞ ≤ η, then the true log
likelihood and the leave-one-out log likelihood asymptotically converge for any parameter
setting θ. Mathematically,

P

(

∃ θ s.t. |εM (θ) − ε̂M
−1(θ)| > T1

Rlog(nm+ |W|)

mθ/2R

)

< T2
(2η + 1)R ·R3 log2(mn)

mθ/2

for some constants T1, T2, θ > 0.

Proof: Divide the [−η, η] range for each parameter into fragments of length γ to get a
grid with ng = ((2η+1)/γ)R grid points . The previous result can be applied at every grid
point θg . Combining all the grid points using a union bound, we get:

P (∃ grid point θg s.t. |εM (θg) − ε̂M
−1(θg)| > 1/mν) < ng · T2

R3 log2(mn)

mθ

for some constant T2. Suppose we now have some parameters θ that do no lie on a grid
point. However, we can always find a grid point (say θG) such that ||θ − θG||∞ < γ.
Similar to Lemma 3, it can be shown that:

|
dεM (θ)

dθr
| ≤ | logP (xr

i |y = 1)| ≤ log(nm+ |W|)

Using such a bound on the derivative, the maximum change in the log likelihood can be
bounded in both cases.

|εM (θ) − εM (θG)| < γ log(nm+ |W|)R

|ε̂M
−1(θ) − ε̂M

−1(θG)| < γ log(nm+ |W|)R

Combining the above bounds and choosing ν > θ/2R and γ = m−θ/2R gives the required
result. 2

Theorem 7 (Sample Complexity) Suppose we want to ensure, with probability at least
(1 − δ), that |εM (θ) − ε̂M

−1(θ)| < ε for all parameters θ such that ||θ||∞ ≤ η. Then it
suffices to choosem = O(poly(1/δ, 1/ε, logn, log |W|, R, η)R) where poly(. . .) denotes a
function polynomial in its arguments.

Proof: Follows from Theorem 6. 2


