
C�� Coding Standards inMLC��

Ronny Kohavi

Ronnyk�sgi�com

June ��� ����

� Introduction

If builders built buildings the way programmers wrote programs� then the �rst
woodpecker that came along would destroy civilization

�Gerald Weinberg

The purpose of this document is to provide coding standards for writing C�� code in MLC��� The
description here can be used as a general guideline for programming in C��� independent ofMLC��� but it
is a low�level guide that does not discuss important issues of design� TheMLC�� coding standards de�nes
de�nes higher�level concepts used inMLC��� including error�handling� defensive programming� and testing�

The conventions established here are designed to make the code more readable and more reliable� Every
rule has exceptions� but deviations from the standards should be documented in the code and explained�

This document used to be longer� but it got shorter because of Meyer�s book �Meyers ����	� Please read
this book ASAP� His second book �Meyers ���
	 is less basic and not as important initially �although still
highly recommended	�h

Annotations are enclosed in brackets and printed in a small font� They elaborate the actual text� giving
reasons and explaining some of the decisions�

i

� Motivation and Overview

E�ciency still matters� but it becomes secondary in that it is irrelevant unless the
larger systems can be economically constructed and maintained

�Stroustroup ������ p� 	
	�

Many programmers routinely ignore compiler warnings� After all� if the problem
were really serious� it�d be an error� right

�Meyers ������ p� ����

The compiler should not generate any warnings for the code� Sometimes we know that the code is correct�
but it is better to make sure everything is clean��

We recommend using full warnings and suppressing those warnings that are truly unimportant or annoy�
ing� For example� SGI�s MIPS� compilers under fullwarn generate remarks that some code may not run
well on a speci�c revision of some CPUs�

�

Code should be structured �few gotos� breaks� and continue statements	� and should avoid hacks and
micro�e�ciencies �e�g�� no register declarations and no inlining of functions over ��
 lines unless performance
analysis show it helps	� The idea is to have a �exible and an extensible code that is easy to maintain�
Performance analysis can be done when it is needed� and the critical ��� of the code can be made faster�
Make sure to get the algorithm right and leave the tweaks for later to lower the constants�

Classes should be written so that the code can be replaced without changing the interface� Avoid putting
data objects as public members� thus exposing the internals�

Use advanced features of C��� such as templates� Non�standard options should not be used because they
will make portability harder�

�

�
��
C�� is an evolving language and many features are not widely available� or there is not enough experience
working with them� The most obvious extension we do not recommend using is exception handling� We
recommend reading Meyers ����	� Items ���
� to get a sense of how hard it is to write correct code with
exceptions�

�
��

��� Naming Conventions

Naming conventions basically follow GNU�lib conventions� with some added de�nitions�

�� Classes and typedefs start with uppercase� Capitalize words in multi�word class �do not use under�
scores	�

�� Instantiations of classes have the same naming conventions as the classes� except that the �rst letter
is lowercase�

� The underscore is used to separate components of long function names�

�� Include �le names that de�ne C�� classes begin with uppercase letters� A class should have the header
�le name identical �or at least very similar	 to the class name with a ��h� su�x� and a source �le name
with a ��c� su�x� Regardless of the actual name� the pre�x �without the extension	 should be the
same for the ��h� and ��c� extensions��

Some people use c�� or C as extensions� but we many template instantiators assume that to �nd
the template the h in the header �le should be replace with c and so you must either name header
�les with a h�� su�x or with a H su�x� both of which are rather ugly�

�

�� File names should resemble the class name or function name they de�ne�

� Classes� types� and functions that are not self describing or that others should use caution when using
them should have a trailing underscore��

Some people use the convention of leading underscores� but we decided to follow the recommendation
in ARM �section
���� �Identi�ers starting with a single underscore � � should also be avoided by
ordinary users since C implementations reserve those for their own use��

�

�For example� the AttrValue class requires an AttrInfo class to parse it� so it is not self�describing��

�� Macros are uppercase� �defines which look and act like types or classes look the same way as classes�h
Avoid using macros where inline functions su�ce� and use typedefs instead of �defines whenever
possible�

i
�� Constants are all uppercase� and should be de�ned in the beginning of the �le� Words should be

separated by underscores �since everything is uppercase	��
Note that in some cases� like where a constant is used to dimension arrays� it cannot be external
and must be de�ned either as �const� or as an enum� De�ning something as enum can be done
inside a class� which encapsulates it nicely� See Meyers ������ item �
��

�

�� Enumeration values �true ones� not declared for constants inside a class	 look like variables��
Enumerated values are actually constants for most purposes� but there tend to be a lot of them�
and we don�t want too much uppercase� Moreover� they are not usually the type of constants that
you ever want to look at to see their value�

�

��� If you write a binary operator such as operator��� use lhs and rhs for the left�hand side and right�
hand side�

�This is a new convention following the suggestion made in Meyers ����	�� �

�

��� Classes
Virtual means magic

�Stroustroup ������ p� 	���

�� Use of public data members should be avoided� These should be accessed through accessor functions�
Access functions may give only read access to the members� that is� they return references to const�
Giving public read�write access is equivalent to making the data member public� and in those cases it
is sometimes better to make the data member public� especially if it is an instantiation of a class��

��
A member that is a class by itself� may be in the public part if it saves duplicating the class interface�
This should not be done too often� as many times class operations do not have the correct meaning
inside another class� It also means �supporting� all the routines the class supports now or in the
future� A better solution is to provide interface functions if not everything needs to be supported�

�
��

�� Classes that have important invariants should have a function member �OK�	� �following GNU�lib	
which tests the invariants� OK has an optional argument for the level of test to do� Higher levels
usually mean faster tests� but there is not necessarily a linear order on simplicity �e�g�� level
 and �
may do di�erent checks	� The default level de�ned in the header �le is the suggested level and should
include a very extensive check� but not necessarily the most extensive�costly test �e�g�� the default level
could be level �	�

The invariants will be described in the description of the function� and this will be the �rst function
after the class header �before the constructors	��

Invariants are an important part of the documentation for anyone wanting to add or modify the
class� so this should be the �rst function� Putting the invariant description in the actual class header
would distract �users� of the class who just read the header�

�

� Classes should not use the default copy constructor unless copying is fast� and it is documented that
the default copy constructor is appropriate� The �le error�h contains the macro NO COPY CTOR�X� This
should be put in the private part of the class� This declares a private copy constructor� Unintentional
usage outside the class will give a compile time error �it is private	� Unintentional usage in the class
will generate a link�time error� as there won�t be a de�nitions for this function�

If a class needs a copy constructor� it is better to force the caller to be aware of the fact that the copy
constructor is being called� instead of automatic code generated by the compiler� This enforcement is
done by de�ning the copy constructor with a second dummy argument of type CtorDummy which is an
enumerated type with one value ctorDummy� Thus� to call the copy constructor� you would typically
write Array�int� a�b�ctorDummy��

�The idea of ctorDummy is similar to the idea in overloading the post�x version of �� �

Similar reasons hold for operator� with the macro NO OPERATOR EQ�X� used to declare it but not
de�ne it�

�� Symmetric operators like � should be member functions� not friend functions��
��������������������

There was a long discussion on the standard for this� Here are some pros and cons�
The advantage to making � a friend function is that it is really a symmetric function� We want a�b
to work exactly as b�a� One example where a member function may fail to do the job is when there
is an automatic conversion going on� For example� suppose class X has an automatic conversion
from �char ��� Given instance x of type X� you can write x��Ronny�� but not �Ronny��x� since there
is no � for �char �� that accepts an instance of X�
The problem with the friend function can be illustrated as follows� Suppose Y is derived from X�
the code x��x� in a routine� where a pointer to Y was passed as x�� should call Y�s �� If operator�
is virtual� we get the right e�ect�
One suggestion which was rejected is that the friend function will call a virtual function plus of the
�rst operand� This will make the automatic conversions work� but the function becomes asymmetric
again� Why should the operator� of the �rst operand be called and not the right one� The decision
was to have operator� asymmetric� and let the programmer know that the left operand determines
which virtual function is used�

�
��������������������

�� operator�� should not be virtual� except if the class is known to be such that no class will be derived
from it� See Stroustroup ������ p� ���	 for details�

�
�����������

The problem with making operator�� virtual is that a function that does something on two base
classes and requires only the base to be similar� does not really need to check equality of other
information� and what�s more� this may not allow using derived objects as objects� A nice example
is AttrCategorizer which checks that the given instance contains attribute information that matches
the attribute information given in the construction of the categorizer� Passing a labelled instance
to Categorize�� will not work if operator�� is virtual� because the attribute information will not
match �the original attribute information does not contain information about the label��
A class like MString may declare operator�� as friend because we do not expect any subclassing
o� String�

�
�����������

� Public member functions of classes should usually be virtual� This is doubly true for the destructor�
See Meyers ������ item ��	� There are some exceptions listed in Koenig �����	

�a	 When e�ciency is a major concern� This should be determined by pro�ling� not in advance� Note
that you can still declare a function virtual inline and the compiler may be able to inline it�

�b	 When non�virtual functions behave �correctly� �as in operator�	�

�c	 When the class is not designed for inheritance�

�d	 When the functions are accessors� or delegators �i�e�� convenience functions	 that are essentially
calling another member to perform the action�

�� Destructors for classes must be declared �even if empty	� and they should be declared virtual� Excep�
tions are made where e�ciency is needed� or if there are no other virtual functions�

�
��
The destructors must be declared even if empty� because we want to make them virtual so that the
destructor for the derived class will be called�
Interestingly� if you want to make an abstract base class non�instantiable� you can make the de�
structor pure virtual� but implement it �you must���

�
��

�� Do not execute too many things in the constructor� Remember that virtual functions you call in
the constructor will not call the derived class�s functions because the virtual table is disabled during
construction and destruction�

��� Functions

���If your favorite introductory C�� textbook doesn�t discuss static members� carefully tear out
all its pages and recycle them� Dispose of the book�s cover in an environmentally sound manner�
and then borrow or buy a better textbookMeyers ������ p� ���	

�� Use of �const� is encouraged for function arguments� All functions that do not change their
arguments should declare them const� All returned values which are pointers to data that
should not be changed should be pointers to constants�

�Declaring atomic types as const is usually useless� thus we do not declare const int� �

�� Member functions which do not update the class or that behave as logically const� should
be declared const functions� Some operators� most notably operator�� should be provided in
two versions� the const and the non�const� The const version returns the const reference to
the element� and the non�const returns an lvalue�

�The basic idea in logical constness is that for caching� or statistics �e�g�� counters�� the function actually updates data
members� but to the outside caller� it behaves as if it is a constant function�

�

�
���
Note that disambiguation is done by the class itself� It a const class is given� the const
function is called� otherwise� the non�const version� There is no overloading on the re�
turned value in C��� If there is a signi�cant di�erence between the const and non�const
version �e�g�� when reference counting is done�� it should be stated in the headers so that
callers can change to a const operation�

�
���

� If a function does not change the argument� but becomes the owner� the argument should be
a reference to a pointer� so that we can change the caller�s value to NULL �see Section ���	�

�� Arguments should be self describing �e�g�� int� � is bad	� They should not rely on other
arguments to give their length� size� etc�� as this is a sign that the abstraction level is too
low �Stroustrup ����� page ��
	�

�� Functions that are written to help the implementation of a class should be de�ned as �static�
�their scope is the �le scope	� or they should be made private members�

�
��
If you �nd yourself repeating code� this is often a good solution� The idea in using static
declarations is to avoid con�icts with other classes that may de�ne the same names� Static
functions may be required if you wish to perform some operation at the constructor when
giving an initialization list�

�
��

� If a function does not use one of its arguments� do not give it a name in order to avoid a
compiler warning� For example�

Array�const Array� source� CtorDummy�	

Note how the second argument is unnamed� Sometimes� it is better to tell what we are
ignoring� i�e�� what the argument is�

void OK�int
� level �
�

��� Ownership

If you listen closely when you read this code� you can hear the sound of
an airplane crashing and burning� with much weeping and wailing by the

programmers who knew it
�Meyers ������ p� �	�

The owner of some memory is responsible for deallocating it� It is possible to allocate an area
and transfer ownership to a di�erent entity which will be in charge of deallocating it� Ownership
is recursive to all levels unless speci�ed di�erently� i�e�� ownership of a tree implies ownership of
strings pointed to from the nodes�

When a function gets ownership of an object� the function should declare the argument as ptr���
This allows the function to copy the pointer� but also set the caller�s pointer to NULL� thus
not allowing it to be used any more� This is intended to avoid mistakes more than a safe�proof
method� as the caller can copy the pointer in advance�

�
One annoying case of the above usage is when you pass a derived class to a function that
accepts a base class� In such cases you must pass a variable of the right type �base class��
because otherwise a temporary is created and a warning is generated�

�

Ownership is recursive� If you own the array� you own the elements inside the array�

In general� it is a good idea to return a pointer when the pointer returned needs to be deallocated
and to return a const reference when you don�t give ownership �this fails if you need to return a
NULL sometimes	�

�

��� Reference Counting

Most problems in Computer Science can be solved with an additional
level of indirection

�Meyers ������ p� 	
��

When ownership problems become a mess to handle because a class is ubiquitous or it needs
to be copied many times� classes should be reference counted� The main advantage of reference
counting is that there are no questions of ownership and that copies are cheap to make �at least
until changes to the object need to be made	�

The best way to make a reference counted class is to avoid special tricks with smart pointers
�some suggested in Meyers ����
		 and to work hard on wrapping the class as shown in Coplien
������ p� ��	� While the initial wrapping around using the handle�body class idiom is harder on
the class implementor� it is transparent to users of the class� which is more important�

It is also useful to add RC to the class name to make it clear that the class is reference counted�
That way the user knows there are no deallocation problems and making copies is very cheap�

The methodology used in MLC�� is to include RefCount�h� which de�nes the standard con�
structors and functions� Then each class member in the handle class parallels each member of
the body class� except that the operation is preceded by set rep�� for construction operations�
read rep�� for read�only operations� and write rep�� for write operations�

Some things to note about using reference counted classes�

�� Beware of using operator
� on non�const instances� Because of the way overloading works�
any non�const function calls write rep�	 to create a local copy� For example� the following
code

for �ILPix pix��this�	 pix	 ��pix� �

InstanceRC instance � �pix	

const AttrValue�� val � instance
attrNum�	

���

�

will be slow because every instance will be copied even though the operator
� is used as
read�only� A much better approach is to add a const� i�e��

const InstanceRC instance � �pix	

this way no copy will be made�

�� A second question with reference counting is the use of references� If you know that the
object will persist� there is no need to get a copy and you might be satis�ed with a reference�
This is especially common when the const object is given as a parameter to a function or
used in a loop� there is really no need to pay for updating the counters� Thus the following
is faster�

for �ILPix pix��this�	 pix	 ��pix� �

const InstanceRC� instance � �pix	

const AttrValue�� val � instance
attrNum�	

���

�

Of course any member that is stored in a class must not be a reference to a reference counted
class� You should invoke the mechanism to make sure it will never be deleted before our
class deletes it�

� Since accesses through reference counted members require another indirection� you may
sometimes want to get the actual body class� The function read rep��� will return a const
pointer to the class� Use of this function should be limited to time�critical situations� Don�t
abuse this�

Finding leaks with reference counted classes is a bit tricky� Suppose function f�� creates instance
x� which is then copied in function g�� into y� Function f�� correctly deallocates x but function
g�� leaks� Tools such as purify will point to f�� as the leaking module� since it originally allocated
the area� which was never deleted �because g�� kept the reference count above zero	� To help
track such leaks� an option is available inMLC�� to allocate one byte on every copy of a reference
counted class and delete this on destruction� That way we will will see that g�� makes a copy
and never deallocates it� This option is automatically invoked when the DEBUGLEVEL is set to

� inMLC����
There are some complex issues if reference counted classes are used in a way that creates cycles�
Object x has a reference to y and y has a reference to x� so neither is deallocated� One has to
watch out that such a thing cannot happen during the design of reference counted classes�

�

��� Be Defensive

Use the last �else� of a chain of �else�ifs� to catch conditions that should
�never� occur� but just might

�Kernighan � Plauger ������

�� Be defensive when you write code� Do not trust the caller and try to check whatever you
can� If a number must be in range� check for that� If an argument is size� check that it is
positive� Some of these checks and asserts could be turned o� for the �nal version�

�� Always ASSERT that a pointer is not NULL before dereferencing it� It is better to get an
assertion failure than a core dump� The ASSERTs may be taken out using preprocessor
de�nes�

� Add integrity checks in an OK�	 function� Remember that tomorrow someone else may
modify your class and will forget to carefully read your meticulously�written comments� It
is always better to have the integrity checks done by the CPU� Calls to OK�	 can be removed
using preprocessor de�nes�

��� Syntax Standards

You don�t need to understand this gobbledygook to use the string class� because
even though string is a typedef for The Template Instantiation from Hell� it

behaves as if it were the unassuming non�template class the typedef makes it appear
to be

�Meyers ������ p� 	���

�� Use �� as a signal for something temporary or something that needs to be looked on again�
When you �nish a piece of code� these will pop out quickly and should be reviewed�

�� Lines in the source code should not exceed �� characters��
This will make them printable� and also allow a standard window� Note that for long
strings� C�� has an option to concatenate constant strings by closing the quotes and
opening them again with no operator in between�

�

� Parentheses should be used when necessary to override precedence� Do not use them like in
LISP� if ��t�� �� �v� �� v��� should be if �t� �� v���v��� Parentheses should be
added to long expressions� especially if they span more than one line� or when mixing ANDs
���	 and ORs ���	�

�An expression which is too big is usually a bad sign� �

�� Preprocessor macro de�nitions should enclose the arguments in parentheses when they are
used� In general� try to avoid macro de�nitions whenever possible� Inline functions and
templates are safer�

�

�
Writing �define SQUARE�x� x�x will give unexpected results if you do square�a�b�� A
better de�nition is �define SQUARE�x� ��x���x�� Here you actually want to use many
parentheses�

�

�� There is no tabbing convention� but if tabs are used they should be the default tabs ��
characters	�h

We �encourage� indentation of � characters� Emacs has options to tabify and untabify
regions� so this tabbing convention is not too important�

i

� The opening brace of functions should begin on a new line as is the standard in most C and
C�� books� Opening braces for ifs and loops should be on the same line� If there is no
brace in an �if�� start a newline anyway�

�� �include statements that include �les from the inc� subdirectory should be done with angle
brackets �as opposed to quotes	�

�
���������

It seems at �rst that quotes could only help� that is� if you have a local copy it would
override the inc� version� but this is not true due to nested includes� Suppose you include
InstanceInfo�h which in turn includes Attribute�h� You have modi�ed Attribute�h� so it is
in the current directory� but InstanceInfo�h is not� The compiler �nds InstanceInfo�h in
the inc� subdirectory� and when it sees �include �Attribute	h�� it also takes it from
the inc� directory which is a mistake since you have a local copy� The solution is that
the �I �ag is used to force the compiler to look in ��� �current dir�� and then in the inc�
subdirectory�

�
���������

�� Learn to read and write C�� as �English�� A statement of the form

return �a �� b�

Should be read as return TRUE if a is equal to b and FALSE otherwise� Avoid the following�

if �a �� b� return TRUE	

else return FALSE	

�� Do not write �I� unless it is clear who you are�

��� Loops with empty bodies should have a small comment warning the reader� For example

for �i��	 check�i�	 i���

	

 null

Empty bodies in other constructs should be avoided �e�g�� never use them in if statements	�

��� Miscellaneous Standards

It is a well�known fact that programmers� as a breed� are sloppy
�Meyers ������ p� �
��

�� There should not be any important constants in the code� All constants should be de�ned in
header �les or at the top of the �le where they are used� References to these name constants
should be made in the class headers so that they can be given in the documentation�h

For example� a limit on the length of a line that can be read from an input �le containing
the instances should be stated in the class doing the reading�

i

�� Overloaded operators should obey the �natural� meaning and follow C�� conventions� For
example� operator �� should be the same as � and ��

� Variables should be declared when �rst used� not at the top of the function�

�

�� No else after if �t� return v	 or after a test that calls fatal error�	� If there is an if
statement that does a return� do not put the rest of the function in an else�

�� When you have an if statement� try to put the easy�short condition �rst� That way you
don�t forget it when you write the code and the reader can see the easy cases �rst�

� Avoid inlining functions in header �les� except if they really need to be fast or they are
one�liners��

�������

Except when speed is crucial� this is usually a mistake� Changing the functions requires
recompilation of everything� and compilation time grows for any function that includes
the header �le�
One�liners are usually interface functions or access functions for which we want to save
the time of writing a header for them in the �c �le�
Sometimes even a one�liner should be moved to the �c �le if its function is not obvious
and documentation can help�

�
�������

�� Parameters should be references except when passing ownership or NULL has a special
meaning �e�g�� when you want a default argument	�

�� Avoid silly typedefs� such as typedef Array�int� IntArray� Users will just be confused
when seeing IntArray� These are useful only if you added some important functionality�

�� Prefer using initialization list in constructors whenever possible� Initialization order should
follow the class declaration order� See Meyers ������ Item ��	�

��� Avoid silly comments such as�

�a	 i��	

 increment i

�b	

 This function is intentionally private

 because users do not need to use it�

As a rule of thumb� if a program could be written to generate such comments� you are
making a fool of yourself�

A Dropped Conventions

�� We had a convention of avoiding �les over �� characters� The reason was that the archiver
on Sun truncated �le of length greater than �� characters� This restriction was lifted in
Solaris and is not present on most modern implementations�

References

Coplien� J� O� �����	� Advanced C�� Programming Styles and Idioms� Addison Wesley Pub Co
Inc�

Kernighan� B� W� � Plauger� P� J� ����
	� Software Tools� Addison�Wesley Pub� Co�

Koenig� A� �����	� �When not to use virtual functions�� The C�� Journal ���	�
��
��

Meyers� S� �����	� E�ective C��� �� Speci�c Ways to Improve Your Programs and Designs�
Addison Wesley Pub Co Inc�

Meyers� S� ����
	� More E�ective C��� �� New Ways to Improve Your Programs and Designs�
Addison Wesley Pub Co Inc�

Stroustroup� B� �����	� The Design and Evolution of C��� Addison�Wesley Publishing Company�

Stroustrup� B� �����	� The C�� Programming Language� second edn� Addison�Wesley Publishing
Company�

E N D

�

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.5
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e0074007300200077006900740068002000680069006700680065007200200069006d0061006700650020007200650073006f006c007500740069006f006e00200066006f007200200069006d00700072006f0076006500640020007000720069006e00740069006e00670020007100750061006c006900740079002e0020005400680065002000500044004600200064006f00630075006d0065006e00740073002000630061006e0020006200650020006f00700065006e00650064002000770069007400680020004100630072006f00620061007400200061006e0064002000520065006100640065007200200035002e003000200061006e00640020006c0061007400650072002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

