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cuspy� �kuhs�pee� �WPI� from the DEC abbreviation CUSP� for �Commonly
Used System Program�� i�e�� a utility program used by many people �

adj� �� �of a program� Well�written� 	� Functionally excellent�
A program that performs well and interfaces well to users is cuspy�


Jargon File 	����

This document describes some of the utility programs written usingMLC���� Appendix A on page 
�
describes the legal issues� installation procedure� and the mailing addresses for questions and bug reports�
Appendix B describes some common error messages� Appendix C describes the additions and modi�cations
that were done since the last major release� The reader is assumed to have general knowledge of machine
learning and some experience with the Unix operating system�

The examples in this document are usually displayed at LOGLEVEL � to save paper�
We recommend that you use MLC�� with the LOGLEVEL set to �� To change the
LOGLEVEL to � you can type

setenv LOGLEVEL �

� Introduction

MLC�� utilities take their options from environment variables or from the command�line� All examples are
given assuming csh or tcsh is the shell� Text starting with the pound sign ��� is a comment� By default�
required options that are not set will be prompted for�
Datasets are assumed to be in the MLC�� format� which is very similar to the C	�� �Quinlan ���
�

format��� Each dataset should include a names �le describing how to parse the data� a data �le containing
the data� and an optional test �le for estimating accuracy�

Example � �Running ID�
Fisher�s iris dataset �Fisher ��
�� contains four attributes of iris plants� sepal length� sepal width� petal
length� and petal width� The task is to categorize each instance into one of the three classes� Iris Setosa�
Iris Versicolour� and Iris Virginica�
To run the ID
 induction algorithm �Quinlan ���� on the iris dataset� consisting of iris�names� iris�data�

and iris�test� one can type�

setenv DATAFILE iris � The dataset stem

setenv INDUCER ID� � pick ID�

setenv ID��UNKNOWN�EDGES no � Don�t bother with unknown edges

setenv DISP�CONFUSION�MAT yes � Show confusion matrix

setenv DISPLAY�STRUCT dotty � Show the tree using dotty

Inducer

�MLC�� is a Machine Learning library of C�� classes� General information about the library can be obtained through the
world wide web at URL http���www�sgi�com�Technology�mlc

�Minor di�erences exist� MLC�� does not support �ignore� in the names �le� The �project� utility can be used instead of
using ignore�






petal-length

Iris-setosa

<= 2.6

petal-width

> 2.6

petal-length

<= 1.65

Iris-virginica

> 1.65

Iris-versicolor

<= 5

sepal-length

> 5
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<= 6.05

Iris-virginica

> 6.05

Figure �� The �le iris�ps depicting the decision tree induced by ID
 on the iris dataset�

dot �Tps �Gpage���	
���� �Gmargin������ Inducer	dot  iris	ps

The output is�

Classifying �� done�� ��� ��� ��� ��� 
�� ��� ��� ��� ��� ���� done	

Number of training instances� ���

Number of test instances� 
�	 Unseen� 
�� seen �	

Number correct� ��	 Number incorrect� �

Generalization accuracy� ��	���	 Memorization accuracy� unknown

Accuracy� ��	��� �� �	��� ���	��� � ��	����

Displaying confusion matrix			

�a� �b� �c� ��� classified as

���� ���� ����

�
 � � �a�� class Iris�setosa

� �
 � �b�� class Iris�versicolor

� � �� �c�� class Iris�virginica

If you have dot installed �see Appendix A on page 
��� you can generate iris	ps �le shown in Figure �� If
you have an X�terminal and dotty�MLC�� will display the graph on the screen�
The generalization accuracy indicates the accuracy on unseen instances and the memorization accuracy

indicates the accuracy on instances in the test set which were also in the training set� The accuracy is followed
by � and the theoretical standard deviation� and the range afterwards is the ��� con�dence interval� See
Section 
 for details�

Example � �Cross�Validation
To cross�validate an inducer �induction algorithm� and a dataset� one can do�

setenv DATAFILE iris	all � �	all� contains all the data

setenv INDUCER ID�

	



setenv ACC�ESTIMATOR cv

AccEst

The output is�

�� folds� � � � � 
 � � � � ��

Method� cv

Trim� �

Seed� ��
����

Folds� ��� Times� �

Accuracy� ��	��� �� �	��� ���	��� � ���	����

cross�validating a di�erent inducer can be done by simply changing the environment variable value�

setenv DATAFILE iris	all

setenv INDUCER IB � A nearest�neighbor algorithm

setenv ACC�ESTIMATOR cv

AccEst

The output is�

�� folds� � � � � 
 � � � � ��

Method� cv

Trim� �

Seed� ��
����

Folds� ��� Times� �

Accuracy� ��	��� �� �	��� ���	��� � ���	����

If you set the LOGLEVEL to �� you will see all the available options� If you set the PROMPTLEVEL
to �basic� or �all� �the default is �required�only���MLC�� will prompt you to �ll in the options� Type ���
at any prompt for help�

� Setting Options

MLC�� utilities have the following command�line options�

�utility ���s� ��o �optionfile� ��O �option��value��

The �s option suppresses environment options� The �o option allows reading options from a �le containing
�option��value per line� and the �O option �uppercase� allows setting a speci�c option� The �o and �O

�ags may be repeated multiple times�
Each option used by a program has a unique name� By convention� option names appear in ALL

CAPS and use underscores between words� although few common options do not use underscores �e�g��
LOGLEVEL�� Options are set according to the following hierarchy�

MLC�� default The default value set in the MLC�� library� If the MLC�� library does not provide a
default value� the option must be supplied and is considered required�

Environment option An environment variable contains the default value� Users can set the environment
variable with the same name as the option itself� For example� setenv DATAFILE �foo� sets the
DATAFILE option to the value �foo�� An environment variable takes precedence over the library
default value� The command�line �ag ��s� will suppress looking at environment variables�

Command�line option As described in the beginning of this section�

User input Under certain settings of PROMPTLEVEL �described below�� users can be prompted for option
values� The default suggested to the user will be taken from the environment and theMLC�� default
described above� If the user types a value� the value will be taken as the option value� If the user types
�return�� then the default value will be accepted� If the user types ���� then the system will provide
some help info on the speci�c option�

�



An environment variable called PROMPTLEVEL determines when to prompt the user for an option� The variable
has three possible values�

Required�only Prompt the user for required options only� Options that have a value set through an
environment variable of through MLC�� will not be prompted� This is the lowest level prompting
mode�

To get help and view the possible values for an enumerated option� type a question
mark ����� at the prompt or set the option to a question mark� For example�

setenv INDUCER ���

will show you all theMLC�� inducers available if you run the Inducer utility�

Basic Prompt for basic options� independent of whether they have a default value or not� Some options
are de�ned as nuisance options in the MLC�� library and will not be prompted by this mode� The
purpose of this mode is to prompt for the most commonly used options�

If the option has anMLC�� default� users can change it to be a nuisance option by setting the option
value to an exclamation mark ������ A nuisance option can be changed to a non�nuisance option by
setting its value to be a question mark ������ See Section  for more details�

All Prompt for all options� regardless of their setting�

When an option requires one of a given set of values� i�e�� an enumerated option� a pre�x of the desired
option value may be used� and comparison is case insensitive� If there are multiple values with the given
pre�x� the �rst one in the list will be chosen� For example� typing setenv INDUCER naive will match
naive�bayes �pre�x match� and setenv INDUCER c�	
 will match C	�� ��rst match� case insensitive��
To facilitate repeat runs of a program under the same options� options may be dumped to a �le� The

dump is in a format which can be sourced by csh or tcsh� The default is not to dump options� To set a
dump �le� set the environment variable OPTION�DUMP to the name of the new �le� We recommend that you
add the following to your �login

setenv OPTION�DUMP ��	mlcoptions

To repeat a run that has been dumped� simply source it� for example�

source ��	mlcoptions

Note that the dump �le is generated as you input options in� so you can source it to �ll�in the options you
have already �lled in even if you aborted the run�

��� Global Environment Variables

The following environment variables are applicable to anyMLC�� program� Note that they are not options
and will not be prompted for� nor written to the dump �le� These variables do not a�ect the inherent
behavior of algorithms� only the display and the �le name search paths�

Option name Domain Default Explanation

PROMPTLEVEL required�
basic�
all

required Determines prompting of options �see above��

�



Option name Domain Default Explanation

MLCPATH pathnames current
directory

Any �le that is opened with a relative name
�i�e�� a name that does not begin with a slash
���� will be searched for in the given colon�
separates paths in the given order�
To include the current directory in the search�
put a period as one of the pathnames� For
example� the value can be�
���u�mlc�db��u�mlc�src�tests�

LOGLEVEL int � � � The amount of information to print� The
higher the number� the more information is
printed� Levels one and two are commonly
used� higher levels help to understand the in�
ternals and to debug the algorithms�

OPTION DUMP �lename none File to dump options �see Section ���

DEBUGLEVEL int � � � Internal debug level� Higher numbers execute
more internal checks� This option is usually
relevant only to developers� If you get an er�
ror� raising the level to � or � might give a
better error message� Programs run slower by
about ��� at level � and about ���� slower at
level �� Note� the library is currently com�
piled in FAST mode� which ignored DEBU�
GLEVEL�

LINE WIDTH int � � �� The line width for MLC�� output� Auto�
matic wrapping will occur to break words be�
fore this width� Wrapped lines will begin with
the WRAP PREFIX string� The default line
width of �� is only set if the output stream is
a tty �isatty���� If the output is redirected to
a �le� the default width is 
�K�

WRAP PREFIX string three
spaces

The pre�x to insert at the beginning of a
wrapped line� Usually a few spaces�

SHOW LOG
ORIGIN

yes� no no Show where in the source code the log messages
are coming from� Log messages are messages
that appear when the LOGLEVEL option is
set to � or higher�

KEEPTEMP yes�no no Keep temporary �les that are generated� This
is useful if you want to analyze the �les used
to interface external inducers�

TMPDIR directory �var�tmp Where to generate temporary �les� see the
tmpnam�� call for details�

��� Common Options

The following options are applicable in manyMLC�� utilities� A dash ��� denotes that the option must
be set and has no default�

�



Option name Domain Default Explanation

INDUCER inducer name � The name of an inducer �see Section 	 on
page ����

DATAFILE �lename � The data�le to work on� This option should
generally be the �le stem �without any su�x��
and implies �names for the names �le� �data for
the data �le� and �test for the test �le�

NAMESFILE �lename data�le The names �le to help parse the data�le� It de�
faults to the stem of the data�le with a �names
su�x�

TESTFILE �lename data�le Utilities that take an optional test �le will use
this option� It defaults to the �lestem of the
DATAFILEwith a �test extension� except if the
DATAFILE ends with ��all�� in which case the
default will be empty �no test �le��

DUMPSTEM �lename � A �le stem to write to� This option is used
in utilities that generate �les� See the conv

utilities for example�

SEED int ����� The default seed for the random generator��

REMOVE
UNKNOWN
INST

yes� no no Removes unknown instances from the data�les
as they are read in�

CORRUPT
UNKNOWN
RATE

Real r
� � r � �

� The rate �probability� for an attribute to be
corrupted to unknown�

DISPGRAPH yes�no no Display the induced tree or graph using dotty�

� Accuracy Estimation

Accuracy estimation refers to the process of approximating the future performance of a classi�er induced by
an inducer on a given dataset� We refer the reader to Kohavi �����b� and Weiss � Kulikowski ������ for an
overview�
In many cases where MLC�� presents an accuracy� it also presents the con�dence of the result� The

number after the � indicates the standard deviation of the accuracy� If a single test set is available� the
standard deviation is a theoretical computation that is reasonable for large test sets and for accuracies
not too close to zero or one� If resamplings are used �cross�validation and bootstrap�� then the standard
deviation of the sample mean is given�� An accuracy range in square brackets is a ��� con�dence bound
that is computed by a more accurate formula �Kohavi ����b� Devijver � Kittler ����� An accuracy range
in parentheses is a ��� percentile interval �Efron � Tibshirani ���
�� the percentile bound is pessimistic in
the sense that it includes a wider range due to the integral number of samples� Below 	� samples� it will
give the lowest and highest estimates� so that one can see the variability of the estimates�

�The default seed is the phone number in the room whereMLC�� was developed�
�The standard deviation of the mean is not the standard deviation of the population� It shows how variable the mean is�

which is smaller than the variability of the population itself by a factor of the number of samples� See any statistics book� such
as Rice ���		
 for details�





MLC�� currently supports several methods of accuracy estimation�

Option name Domain Default Explanation

ACC
ESTIMATOR

cv� strat�cv�
bootstrap�
hold�out�
test�set

cv Accuracy estimation method to use� cross�
validation� strati�ed cv� bootstrap ��
�� hold�
out� and testset� The testset �cheats� by look�
ing at the test set and may be used to derive
upper bounds on the performance�

ACC TRIM Real r
� � r � ��

��� Ratio of cross�validation folds to trim �the ex�
treme values are trimmed�� This might stabi�
lizes the procedure because there may be un�
representative folds� A reasonable value is ����
See Rice ���� 

��


� for exact method of
computing the mean and variance for trimmed
data�

Holdout The dataset is split into two disjoint sets of instances� The inducer is trained on one set� the
training set� and tested on the disjoint set� the test set� The accuracy on the test is the estimated
accuracy�

Option name Domain Default Explanation

HO TIMES int � � � The number of times to repeat holdout� If
holdout is repeated more than once� it is some�
times referred to as random subsampling�

HO NUMBER int ge� � The number of instances to use in training the
inducer� leaving the rest for the test set� If the
value is zero� the HO PERCENT option is used
instead� If the number is negative� the absolute
value speci�es the number of instances to leave
in the test set� with the rest used for training�

HO PERCENT Real r
� � r � �

��
 The percentage of the instances to use for the
training set� leaving the rest for the test set�

Cross�validation In k�fold cross�validation� the dataset is randomly split into k mutually exclusive subsets
�the folds� of approximately equal size� The inducer is trained and tested k times� each time tested
on a fold and trained on the dataset minus the fold� The cross�validation estimate of accuracy is the
average of the estimated accuracies from the k folds�

Option name Domain Default Explanation

CV FOLDS int �� �� � �� The default number of folds to use in cross val�
idations� A negative number k does leave���k��
out cross validation�

�



Option name Domain Default Explanation

CV TIMES int � � � Number of times to repeat the cross�validation
procedure� Higher numbers reduce the vari�
ance of the estimate� Zero ��� uses a heuristic
that repeats cross�validation until the variance
estimation goes below a threshold standard de�
viation �DES STD DEV� or a maximumnum�
ber of times is reached �MAX TIMES�� Note
that the estimate of the variance assumes in�
dependence of folds which is inaccurate when
cross�validation is executed multiple times� this
independence assumption becomes unrealistic
as the number of executions increases� Given
all that� it works pretty well in practice�

Strati�ed cross�validation Same as cross�validation� except that the folds are strati�ed so that they
contain approximately the same proportions of labels as the original dataset�

Bootstrap The ��
� Bootstrap �Efron � Tibshirani ���
� estimates the accuracy as follows� Given a
dataset of size n� a bootstrap sample is created by sampling n instances uniformly from the data
�with replacement�� Since the dataset is sampled with replacement� the probability of any given
instance not being chosen after n samples is �����n�n � e�� � ��
�� the expected number of distinct
instances from the original dataset appearing in the test set is thus ���
�� The �� accuracy estimate is
derived by using the bootstrap sample for training and the rest of the instances for testing� Given a
number b� the number of bootstrap samples� let ��i be the accuracy estimate for bootstrap sample i�
The ��
� bootstrap estimate is de�ned as

accboot �
�

b

bX

i��

����
� � ��i  �
� � accs�

where accs is the resubstitution error estimate on the full dataset �i�e�� the error on the training set��

Option name Domain Default Explanation

BS TIMES int � � �� The number of bootstrap samples �b��

BS FRACTION Real r
� � r � �

���
� The bootstrap fraction multiplying the unseen
instances�

� Inducers

As no one decision tree building method �or� for that matter� machine learning method� is
the best for all datasets� we feel that a machine learning researcher�practitioner should

experiment with as many methods as possible when attempting to solve a problem�

S�K� Murthy� S� Kasif� S� Salzberg� README for OC�

MLC�� supports many inducers �induction algorithms�� but there is an important dichotomy� The �rst
inducer type is called a �regular� inducer and it must be implemented in MLC�� itself� The second type
is called a base inducer and can either be implemented in MLC�� or it can be an external inducer� A
base inducer cannot categorize speci�c instances� only a set of instances� All external inducers� which are
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interfaced through MLC�� �e�g�� C	��� PEBLS� aha�IB� and OC�� T�� are base inducers� Base inducers
are given the training set and test set and return the accuracy� Some MLC�� algorithms are also base
inducers or may behave like such under certain conditions� For example� if the FSS �feature subset selection�
inducer option SHOW REAL ACC is not �never�� then FSS behaves like a base inducer because it must
have access to the test set to display the real accuracy as it progresses �this accuracy is not used in the
induction process� it is only used for display purposes�� Besides the technical details� some wrappers �e�g��
bagging� only support operations on regular inducers� Confusion matrices in the �Inducer� utility are an
option provided only for regular inducers� We now describe the available inducers and their options�

��� Const

Const predicts a constant class�the majority class in the training set� The accuracy of the const inducer is
commonly referred to as the baseline accuracy�

��� Naive Bayes

The Naive�Bayes inducer �Langley� Iba � Thompson ����� Duda � Hart ���
� Good ����� computes condi�
tional probabilities of the classes given the instance and picks the class with the highest posterior� Attributes
are assumed to be independent� an assumption that is unlikely to be true� but the algorithm is nonetheless
very robust to violations of this assumption�
The probabilities for nominal �discrete� attributes are estimated by counts� The probability for zero

counts is ���m for m instances� The probabilities for continuous attributes are estimated by assuming a
normal distribution for each attribute and class� Unknown values in the test instance are skipped �equivalent
to marginalizing over them��
Better results are commonly achieved by discretizing the continuous attributes� The disc�naive�bayes

inducer provides this preprocessing step by chaining disc��lter�inducer to naive�bayes inducer �Dougherty�
Kohavi � Sahami ������ Further improvements can usually be achieved by running feature subset selection
�Langley � Sage ���	� Kohavi � Sommer�eld ����� as shown below�

setenv INDUCER disc�filter

setenv DISCF�INDUCER FSS

setenv DISCF�FSS�INDUCER naive

setenv DISCF�FSS�CMPLX�PENALTY �	���

setenv DISCF�FSS�CV�TIMES �

setenv DISCF�FSS�ACC�ESTIMATOR cv

setenv DISCF�FSS�CV�FOLDS 


setenv DISCF�FSS�DIRECTION backward

��� ID�� MC�

ID
 is a very basic decision tree algorithm with no pruning� MC	 includes pruning similar to C	�� �Quinlan
���
�� Except for unknown handling� which is di�erent� MC	 should give you similar results to those of
C	��� Underneath� both are the same algorithm with di�erent default parameter settings�
The MIN SPLIT WEIGHT is the minimumpercent of training instances divided by the number of classes

that are required to trickle down to at least two branches in a given node� The LBOUND MIN SPLIT and
UBOUND MIN SPLIT bound this number from below and above� This provides a similar mechanism to
C	���s handling of splits� The determination of the bound is as follows� First� the minimum number of
instances is computing using WEIGHT �this is computed as a �oating point number�� then if this number is
higher than the UBOUND it becomes UBOUND� Finally� if this number if lower than LBOUND� it becomes
LBOUND�
ID
 DEBUG adds information to each node� indicating the number of instances� entropy� and mutual

information� Set DISPLAY STRUCT to �dot� and view the resulting Inducer�dot �le in dot�dotty after
running the Inducer utility� or simply use the ID
 utility�

��



ID
 UNKNOWN EDGES determines whether an edge is generated to handle unknown values� If this
option is FALSE� you will get a nicer looking tree� but it will fail if there are instances with unknown values�
Note that C	�� has a better mechanism of handling unknowns�
ID
 SPLIT BY determines the splitting criterion� Either regular mutual�information is used� or mutual�

information normalized by the number of values is used�

��� Decision Tables

One of the simplest conceivable inducers� Stores a table of all instances� predicts according to the table�
If an instance is not found� table�majority predicts the majority class of the table and table�no�majority
returns �unknown� �always wrong against test�set��
When coupled with feature subset selection it provides a powerful inducer for discrete data �Kohavi

����a�� If discretization is done� it is also powerful for data with continuous attributes� For example� to run
discretization and feature subset selection� one can de�ne the following options�

setenv INDUCER disc�filter

setenv DISCF�INDUCER FSS

setenv DISCF�FSS�INDUCER table�majority

setenv DATAFILE cleve

and run the Inducer utility� Consider raising the LOGLEVEL to � to see the progress� You can use the
project utility on the �nal node in order to study the selected attributes in isolation�

��� Instance Based Algorithms

IB is an instance�based inducer �Aha ����� Wettschereck ���	�� A good� robust algorithm� but still slow
when there are many attributes�
NUM NEIGHBORS determines the number of neighbors to use� In discrete domains� many neighbors

will have the same distance� so NNKVALUE determines whether the number of neighbors will actually
be neighbors of di�erent distances� with tie�breaking instances counting as a single neighbor� NORMAL�
IZATION determines whether the data should be normalized according to extreme values� according to
the interquartile range ���� to ����� or whether no normalization should take place� NEIGHBOR VOTE
determines whether the neighbors vote equally or with voting power inversely proportional to their dis�
tance� MANUAL WEIGHTS allows setting the weights per attribute manually� i�e�� by typing them for each
attribute�

��� C��� Variants

A description of C	�� is given in Quinlan ����
�� The C	��� C	���no�pruning� and C	���rules are interfaces
to C	��� which you need to install on your own� They requires �c	��� and �c	��rules� to be in the path� and
use the �le !MLCDIR�c	�test�awk� C	�� can be purchased with the C	�� book by Ross Quinlan �ISBN� ��
������	��� Patches can be retrieved by anonymous ftp to ftp�cs�su�oz�au� directory pub�ml� �le patch�tar�Z�
You can modify the default behavior �options� for C	�� by setting the C	� FLAGS �default is �u �f �s��

The �s will be replaced by the �le name stem as required by C	��� C	���rules run C	�� then C	��rules and
the appropriate options can be set using C	�R FLAGS� for C	�� and C	�R FLAGS� for C	��rules� Unless
you use version � of C	��rules� the return status is wrong� which is why we�ve added an �echo� dummy
statement to C	�R FLAGS��

C�
 STATS allows you to generate statistics about the generated trees� including the number of nodes and
the number of attributes� It is mostly useful if you want to see these statistics for ���fold CV as opposed to
a single run�

MAX C�
 TRIES determines the number of times to call C	�� in case there is a problem running C	�� or
parsing its output� The default value of one su�ces unless a cleaning job removes �les from �tmp and may
remove interface �les� For example� in Kohavi �����b� some runs made hundred of thousands of calls to
C	�� to compute a single number� It was crucial to make sure that even if the interface �les were removed�
a smooth recovery would occur by regenerating the �les�
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��	 Holte
s OneR

OneR is a simple classi�er that makes a one�rule� i�e�� a rule based on the value of a single attribute
�Holte ���
�� MIN INST is the minimumnumber of instances for a discretization interval� Holte recommends
the value six for most datasets� OneR is currently implemented only as a base inducer�
OneR shows that it is easy to get reasonable accuracy on many tasks by simply looking at one attribute�

Contrary to common claims and misinterpretations regarding Holte�s results� the inducer is signi�cantly
inferior to C	��� The average accuracy of OneR for the datasets tested by Holte is ���� lower than that
of C	�� �Holte ���
� page ���� If we look at the error rate� then C	�� has an error of �	���� and OneR
therefore makes 	�� more errors than C	���

��� T�

T� is a two�level decision tree that minimizes the number of errors and discretizes continuous attributes
�Auer� Holte � Maass ������ It requires large amounts of memory if you have many clases�

��� HOODGList�HOODG� Oblivious Decision Graphs

An inducer for building oblivious decision graphs bottom�up �Kohavi ���	a� Kohavi ���	b�� Does not handle
unknown values� HOODG su�ers from irrelevant or weakly relevant features� which is why you should use
feature subset selection� HOODG also requires discretized data� so disc��lter must be used� The following
example shows an example run with the dotty output shown in Figure ��

setenv DATAFILE monk�

setenv DRIBBLE false

setenv INDUCER disc�filter � oodg can only work on discrete data

setenv DISCF�INDUCER fss � feature subset selection

setenv DISCF�FSS�INDUCER hoodg

setenv DISCF�FSS�MAX�STALE � � how much to search before stopping

setenv DISCF�FSS�CV�TIMES � � heuristic for running cv multiple times

setenv DISCF�FSS�CV�FOLDS 
 � 
�fold CV

setenv DISCF�FSS�CMPLX�PENALTY �	���� � Small penalty for more features

setenv DISCF�FSS�SHOW�REAL�ACC never � Otherwise it�s a base inducer

setenv REMOVE�UNKNOWN�INST yes

setenv DISPLAY�STRUCT dotty � Let�s see final graph

setenv INDUCER�DOT oodg	dot � Where to keep the dot output

Inducer

The output is�

Number of training instances� ���

Number of test instances� ���	 Unseen� ���� seen ���	

Number correct� ���	 Number incorrect� �

Generalization accuracy� ���	���	 Memorization accuracy� ���	���

Accuracy� ���	��� �� �	��� ���	��� � ���	����

Note� this categorizer type does not support persistence

Invoking feature subset selection can be very slow� An alternative approach that is much faster is to
use entropy to �nd a good set of attributes� The inducer �list�hoodg� encapsulates everything needed for
the search� The option AO GROW CONF RATIO� which is the proportion of misclassi�ed instances at a given
level� determines the stopping criteria� Thus a higher number means less attributes will be used� See Kohavi
�����c� for more information�
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Figure �� The Oblivious Decision Graph �OODG� for Monk��

���� Aha Instance�based series �IBL�

Aha�ib is an external inducer that interfaces the IB��	 series from 
����	 �Aha ������ IB CLASS should be
set to one of the following values� ib�� ib�� ib
� or ib	� The seed and speci�c �ags can be set in the options
IBL SEED and IBL FLAGS� The executable �ibl� must be in the current path�
IBL is a research system and is not very robust� It does not check when its limits are exceeded and

sometimes goes out of bounds on arrays� corrupting memory and usually core dumping� If it crashes� the
most probable cause is that some constant in datastructures�h is too small� In the version distributed with
MLC�� we have increased the limits to ��� attributes and ������ instances�
There are some problems that we have discovered when trying to IBL on many data�les�

�� If the �les are too small �few instances�� the test set accuracy is not reported �e�g�� soybean�small��

�� The program probably leaks memory� It required more than ���MB for the mushroom dataset�


� It does not handle spaces in attributes values� which can cause problems in some �les �this could be
taken care of in the MLC�� conversion code� but it is very rare so we do not handle it yet��

Contact David Aha �aha"aic�nrl�navy�mil� with questions� problems� and requests for the source code�

���� Perceptron and Winnow

Perceptron and Winnow are inducers that build linear discriminators� They are only capable of handling con�
tinuous attributes with no unknowns and two�class problems� For discrete data� you can use the �conv� util�
ity to convert the input attributes to local encoding or binary encoding� The REMOVE UNKNOWN INST
option can be used to remove instances with unknown values�
Perceptron uses the error correction rule �equation ����� in Hertz� Krogh � Palmer ������� Winnow uses

the algorithm described in Littlestone �����
All attributes are normalized to be in the range #�� �$ using extreme normalization �lowest values maps

to �� highest maps to ��� For di�erent normalization types you can use cont��lter inducer as a preprocessor
or run the �conv� utility� The reason for this normalization is that winnow over�ows really fast when it
raises numbers to powers�

���� OC�

OC� is an external inducer that interfaces OC� version 
 �Murthy� Kasif � Salzberg ���	�� The source can
be obtained from the Johns Hopkins University� Department of Computer Science� The latest version of the
OC� system can be directly obtained by anonymous FTP from blaze�cs�jhu�edu� in the directory pub�oc��
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Questions regarding OC� should be directed to its authors� Sreerama Murthy� Steven Salzberg and Simon
Kasif �E�mail� lastname"cs�jhu�edu URL� http���www�cs�jhu�edu�lastname��

Any commercial use of OC� is strictly prohibited without the express written consent of the
authors� If you use the OC� software in the context of any of your publications� please reference Murthy
et al� ����	��

The following options are Supported�

OC� SEED to set the seed�

OC� AXIS PARALLEL ONLY to force axis parallel splits�

OC� CART LINEAR COMBINATION MODE to force CART�like splits �Breiman� Friedman� Ol�
shen � Stone ��	��

OC� PRUNING RATE to set the pruning rate�

The executable �mktree� must be in the current path�

���� PEBLS

PEBLS is an external inducer that interfaces the Parallel Exemplar�Based Learning System version ��� by
Cost � Salzberg ����
�� Please contact salzberg"cs�jhu�edu for more information� The sources can be
retrieved at URL ftp���ftp�cs�jhu�edu�pub�pebls��
Several changes were made to the original source code� The maximumnumber of instances was increased

from ��� to ����� and the maximum number of characters in class names was increased to �� �con�g�h��
The program was changed to return status � upon exit if the run was successful� A severe bug was �xed in
the way weighted voting is handled�
Supported options are� PEBLS DISCRETIZATION LEVELS� PEBLS NEAREST NEIGHBORS� and

PEBLS VOTING SCHEME� The executable pebls must be in the current path�

���� CN�

CN� is an external inducer that interfaces the CN� program �Clark � Niblett ���� Clark � Boswell ������
Please see
http���www	cs	utexas	edu�users�pclark�software	html or contact pclark cs	utexas	edu for more
information�

���� Miscellaneous

Some inducers are still being developed or have esoteric uses� We brie�y mention them�

Accuracy estimator is a wrapper inducer that runs a given inducer in ACC INDUCER� estimates its
accuracy using an accuracy estimation method� and returns that as the resulting accuracy� The AccEst
utility provides a friendlier interface� but there are occasions where one wants to do two levels of
accuracy estimation �e�g�� cross�validation accuracy on holdout sets�� where this inducer is very useful
�Kohavi ����b��

NULL always predicts unknown and thus gets �� accuracy� It is mostly used internally� but can be used
with the Inducer utility and DISP CONFUSION MAT set to true in order to view the distribution of
the labels� The �info� utility is probably a better way of getting basic statistics about a data �le�

EODG is an inducer for building oblivious decision graphs top�down �Kohavi � Li ������ Cannot handle
unknown values�

LazyDT is a lazy decision tree algorithm� described in Friedman� Kohavi � Yun �������

Order�fss searches for an attribute ordering� Very researchy�
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Disc�search is a wrapper discretizer that searches for the best number of intervals for each attribute� Very
slow�

Weight�search is a wrapper discretizer that searches for the best weight for each attribute �from a uniform
set of weights�� Slow� Researchy� Not much improvement over feature subset selection�

CatDT Builds decision trees with categorizers you choose at the leaves� Researchy� Requires that inducers
support copies� which very few do �e�g�� naive�bayes��

� Wrapper Inducers

Wrapper inducers are not inducers in the ordinary sense� but are inducers that wrap around other inducers
to modify their behavior and hopefully improve their performance or allow them to do operations that they
could not otherwise perform �e�g�� discretize the data for them��

��� Discretization �lter

Disc��lter is a wrapper inducer that takes the wrapped inducer in the DISCF INDUCER option� Options
for the wrapped inducer will be pre�xed by the �DISCF � pre�x�
The most important option is the discretization type� entropy� �r� bin� c	���disc� t��disc� The en�

tropy discretization seems to be the best discretization method from the allowed options for most practical
datasets �Dougherty et al� ������ Methods which require specifying the number of intervals need the option
DISC NUM INTR� which determines the number of intervals� Possible options are� Algo�heuristic �algo�
rithm dependent heuristic�� Fixed�value �you specify the number�� and MDL �based on Fayyad � Irani
����
��� The entropy method requires MIN SPLIT� the minimum number of instances in an interval� and
the algorithm heuristic defaults to MDL� The �r method is Holte�s method of discretization used in the OneR
rule �Holte ���
�� It requires MIN INST� the minimumnumber of instances per bin �� will be changed to ��
the default suggested by Holte�� The bin method uses uniform binning �equal intervals� and the algorithm
heuristic for the number of bins is to use twice the log �base �� of the number of distinct values� a heuristic
used in Splus �Spector ���	� and compared in Dougherty et al� ������� The T� algorithm �Maass ���	� Auer
et al� ����� heuristic is to form number of classes plus one bins�

��� Bagging

Bagging is a wrapper inducer that runs the wrapped inducer� speci�ed in the BAG INDUCER option�
multiple times on subsets of the training set� During classi�cation� the induced classi�ers vote and the
majority class is chosen �Breiman ���	� Wolpert ������ The wrapped inducer must be a regular inducer
�not a base inducer��
Bagging seems to work best on unstable inducers� that is� inducers that su�er from high variance because

of small perturbations in the data �Geman� Bienenstock � Doursat ������ Unstable inducers include decision
trees �e�g�� ID
� and perceptrons� an example of a very stable inducer is nearest neighbor� which has a high
bias in high�dimensional spaces� but very little variance� What you lose by bagging is the ability to understand
the data� you have �� experts that vote on the label and gains are achieved if they are all good but disagree
between themselves many times�
The BAG REPLICATIONS option determines the number of classi�ers to create� the more� the �better�

in the sense that the result will be more stable� BAG PROPORTION determines the proportion of the
training set that will be passed to each copy of the inducer� The higher the proportion� the larger the internal
training set� however� if the data is not perturbed enough� the classi�ers won�t be di�erent and bagging won�t
work well �Krogh � Vedelsby ������ BAG UNIF WEIGHTS is a Boolean option that determines whether
the votes are equal or estimated� If the votes are estimated� the portion of the training set that was not
used for internal training is used as a test set� and the estimated accuracy is the weight associated with
the induced categorizer� Due to high variance in the estimation� this option does not seem to work well in
practice�
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��� Feature Subset Selection

The feature subset selection is a wrapper inducer that selects a good subset of features for improved accuracy
performance �Kohavi � Sommer�eld ����� Kohavi ���	c� John� Kohavi � P�eger ���	��
All options in accuracy estimation �Section 
� can be used with the extra options listed below�

Option name Domain Default Explanation

FSS INDUCER Inducer � Inducer to wrap around�

FSS DOT FILE �lename FSS�dot The name of the dot �le that will contain
the search space�

FSS SEARCH METHOD hill�
climbing�
best��rst

best Search method in the space of feature sub�
sets�

FSS DIRECTION forward�
backward

forward Start with the empty set of features �for�
ward� or all features �backward��

FSS EVAL LIMIT int � � � Maximumnumber of test�set evaluations to
conduct� This is an one method of stopping
the search �the other is MAX STALE�� The
value zero ��� implies no limit�

FSS SHOW REAL ACC always�
best�only�
�nal�only�
never

best When to show the accuracy on the test set�
Note that this accuracy is not used by the
search mechanism to direct the search� If
the accuracy is not �never�� then this in�
ducer behaves as a base inducer�

FSS MAX STALE int � � � A search is considered stale if this number of
non�improving nodes were expanded� This
determines one termination condition�

FSS EPSILON Real � � ����� Consider a node non�improving if estimated
accuracy was better than the best by this
number�

FSS USE COMPOUND yes�no yes Generate nodes that combine the features
of the best generated children �Kohavi �
Sommer�eld ������

FSS CMPLX PENALTY Real ����� How much to penalize the estimate for each
feature�

Example � �Feature Subset Selection
To run the IB inducer on the monk� dataset� one can do�

setenv LOGLEVEL �

setenv INDUCER FSS

setenv FSS�INDUCER IB

setenv DATAFILE monk�

setenv FSS�DOT�FILE IBFSS�dot

Inducer

The output is�

MLC�� Debug level is �� log level is �

��



OPTION PROMPTLEVEL 	 required
only

OPTION INDUCER 	 FSS

OPTION INDUCER�NAME 	 FSS

OPTION FSS�INDUCER 	 IB

OPTION FSS�INDUCER�NAME 	 IB

OPTION FSS�NUM�NEIGHBORS 	 �

OPTION FSS�EDITING 	 false

OPTION FSS�NNKVALUE 	 num
distances

OPTION FSS�NORMALIZATION 	 extreme

OPTION FSS�NEIGHBOR�VOTE 	 inverse
distance

OPTION FSS�MANUAL�WEIGHTS 	 false

OPTION FSS�DOT�FILE 	 IBFSS�dot

OPTION FSS�SEARCH�METHOD 	 best
first

OPTION FSS�EVAL�LIMIT 	 �

OPTION FSS�SHOW�REAL�ACC 	 best
only

OPTION FSS�MAX�STALE 	 �

OPTION FSS�EPSILON 	 �����

OPTION FSS�USE�COMPOUND 	 true

OPTION FSS�CMPLX�PENALTY 	 �

OPTION FSS�ACC�ESTIMATOR 	 cv

OPTION FSS�ACC�EST�SEED 	 ������

OPTION FSS�ACC�TRIM 	 �

OPTION FSS�CV�FOLDS 	 ��

OPTION FSS�CV�TIMES 	 �

OPTION FSS�CV�FRACT 	 �

Method� cv

Trim� �

Seed� ������

Folds� ��� Times� �

OPTION FSS�DIRECTION 	 forward

OPTION DATAFILE 	 monk�

OPTION NAMESFILE 	 monk��names

OPTION REMOVE�UNKNOWN�INST 	 false

OPTION CORRUPT�UNKNOWN�RATE 	 �

Reading monk��data�� done�

OPTION TESTFILE 	 monk��test

Reading monk��test����� done�

New best node �� evals� ����� accuracy� ������ �
 ���� ������� 
 ��������

Test Set� ������ �
 ���� ������� 
 �������� Bias� 
������ cost� �� complexity� �

�������

New best node �� evals� ������ accuracy� ����� �
 ��� ������� 
 �������

Test Set� ������ �
 ���� ������� 
 �������� Bias� 
����� cost� �� complexity� �

������

New best node ��� evals� ����� �� ��� accuracy� ������ �
 ����� ������� 
 ���������

Test Set� ������� �
 ����� ������ 
 ��������� Bias� 
����� cost� �� complexity� �

�������������������

Final best node ����� �� ��� accuracy� ������ �
 ����� ������� 
 ���������

Test Set� ������� �
 ����� ������ 
 ��������� Bias� 
����� cost� �� complexity� �

Expanded � nodes

Accuracy� ������� �
 ����� ������ 
 ��������

This example shows that one can improve the accuracy from ��� to ������ by looking at only three
features� In this case we know that these are the only three relevant features� but it is important to note
that they were found automatically� Figure 
 shows the nodes visited and their information� The graph is
automatically stored in the �le FSS�dot� The edges show the di�erence in estimated accuracy between the
two nodes� The information in each node of the graph is the following�

�� On the top line is the node number� This helps you see the order in which nodes were evaluated� Then

�



#0[]
est: 39.49% +- 2.45%
real: 50.00% +- 2.41%

#1[0]
est: 59.68% +- 4.60%

20.19

#2[1]
est: 43.46% +- 2.83%

3.97

#3[2]
est: 54.10% +- 4.18%

14.62

#4[3]
est: 51.79% +- 4.26%

12.31

#5[4]
est: 73.21% +- 2.92%
real: 75.00% +- 2.09%

33.72

#6[5]
est: 39.55% +- 3.05%

0.06

#7[0, 4]
est: 71.67% +- 3.37%

32.18

#8[1, 4]
est: 71.67% +- 2.64%

-1.54

#9[2, 4]
est: 71.54% +- 3.70%

-1.67

#10[3, 4]
est: 71.60% +- 3.43%

-1.6

#11[4, 5]
est: 69.17% +- 3.37%

-4.04

#12[0, 1, 4]
est: 99.17% +- 0.83%

real: 100.00% +- 0.00%

25.96

#13[0, 1, 3, 4]
est: 91.09% +- 2.87%
real: 95.37% +- 1.01%

17.88

#14[0, 1, 2, 4]
est: 95.06% +- 2.54%
real: 93.06% +- 1.22%

-4.1

#15[0, 1]
est: 79.23% +- 5.18%

-19.94

#16[0, 1, 4, 5]
est: 90.45% +- 3.93%
real: 95.83% +- 0.96%

-8.72

#17[0, 1, 2, 3, 4]
est: 82.95% +- 4.31%

-16.22

#22[1, 3, 4]
est: 63.59% +- 3.44%

-27.5

#23[0, 3, 4]
est: 65.96% +- 3.97%

-25.13

#24[0, 1, 3]
est: 77.56% +- 5.72%

-13.53

#25[0, 1, 3, 4, 5]
est: 84.81% +- 3.66%
real: 88.43% +- 1.54%

-6.28

#18[1, 2, 4]
est: 59.62% +- 4.50%

-35.45

#19[0, 2, 4]
est: 70.90% +- 2.58%

-24.17

#20[0, 1, 2]
est: 74.42% +- 5.15%

-20.64

#21[0, 1, 2, 4, 5]
est: 83.85% +- 4.30%
real: 91.67% +- 1.33%

-11.22

#26[1, 4, 5]
est: 64.62% +- 3.67%

-25.83

#27[0, 4, 5]
est: 68.46% +- 3.74%

-21.99

#28[0, 1, 5]
est: 82.37% +- 4.56%

-8.08

#29[1, 3, 4, 5]
est: 60.45% +- 3.88%

-24.36

#30[0, 3, 4, 5]
est: 65.26% +- 2.79%

-19.55

#31[0, 1, 2, 3, 4, 5]
est: 76.79% +- 4.91%

-8.01

#32[0, 1, 3, 5]
est: 79.10% +- 5.35%

-5.71

Figure 
� The search space for IB on the monk� dataset

come the set of features used in brackets �starting from feature ���

�� On the second line is the estimated accuracy� from whatever accuracy estimation used �e�g�� cross�
validation� bootstrap� holdout� with the standard deviation of the mean�


� The third line will appear only for nodes where the real accuracy was computed �accuracy on the test
set�� The evaluation depends on the setting of on FSS SHOW REAL ACC� By default� only nodes
that were �best� at some stage will have this number� Note that this accuracy is never used by the
search algorithm�

��� C��� with Auto Parameters

C	���auto�parm is a wrapper algorithm that runs a search over the possible parameter settings for C	�� and
tries to pick the best one for the given dataset� You can decide which parameters to vary by setting the
AP VARY X options� where X is either M�C�G� or S �see Quinlan ����
� for the meaning of these options��
Almost all options applicable to the FSS search �Section ��
� are applicable here with the AP pre�x instead
of FSS pre�x� The search space explored is dumped into the �le AP�dot and can be viewed using dot or
dotty�
The algorithm was reported in Kohavi � John ������� although some changes since then mean results

won�t exactly match� Speci�cally� we do not add and subtract � from the array of possibilities because the
reviewers considered this a bad hack� Also note that AP CV TIMES was set to � in our experiment� which
takes more time�

� Utilities

Utilities provided by MLC�� are simple programs �usually less than ��� lines of code� that interface the
library to perform common functions�

��� Inducers

The Inducer utility runs the given inducer on the given data�le and reports the following statistics�

��



Figure 	� A snapshot of the MineSet tree visualizer �y�through�

Instance Counts The number of training instances� test instances� the number of unseen test instances�
and the number of instances seen�

Classi�cation counts The number of correct and incorrect classi�cations�

Generalization accuracy The accuracy on the unseen instances�

Memorization accuracy The accuracy on the seen instances� A big discrepancy between the generaliza�
tion and memorization accuracy usually indicates over�tting�

Accuracy The overall accuracy on the test set�

Option name Domain Default Explanation

DISP CONFUSION MAT yes� no no Display a table of classi�cations versus cor�
rect classes�

DISP MISCLASS yes� no no Display the misclassi�ed instances�

��



Option name Domain Default Explanation

DISPLAY STRUCT none�
ASCII� dot�
dotty�
treeviz

none Display the inducer classi�er� ASCII out�
puts the classi�er to the screen� Dot will
output an Inducer�dot �le for inducers that
support dot output �only decision tree and
decision graph classi�ers�� treeviz will out�
put �les compatible with Silicon Graphics�
MineSet tree visualizer and call it� The
tree visualizer allows ��ying� through the
tree� Figure 	 shows a snapshot for the vote
dataset�

INDUCER DOT �lename Inducer�
dot

Only appears if DISPLAY STRUCT is dot�

DIST DISP yes� no no Display distribution at nodes� This option
will be available only when relevant�

CAT NAME �lename The persistent categorizer name which con�
tains the categorizer� A ��cat� su�x will be
appended� Use with the Categorize utility�
Few inducers now support persistence�

��� Accuracy Estimation

The AccEst utility gives estimated accuracy on future instances by di�erent accuracy estimation methods�
See Section 
 for details�

��� Info

The info utility provides basic statistical information about a dataset� It reports the number of instances in
the ��data� �le� ��test� �le� and ��all� �le �the ��all� is optional and should contain the ��train� and ��test�
for used in AccEst��
It reports the class probabilities� the number of attributes� and their type �continuous or nominal�� If

the option SHOW ATTR INFO is yes� then the number of values for each attribute is given� This may help
pinpoint inappropriate declarations of attributes or even continuous attributes which simply have very few
values�
Converting attributes with only two values to nominal is generally suggested to gain speedup� For

example� the running time for C	�� �excluding MLC�� overhead� on the StatLog DNA dataset �Taylor�
Michie � Spiegalhalter ���	� is �	 seconds on an SGI Indy if the attributes are declared continuous and 	��
seconds if they are declared nominal� Minor accuracy di�erences may result due to slightly di�erent ways of
handling such attributes�

Example � �The �info� utility
To get information about the attributes in the data�le �labor�neg� one can type�

setenv DATAFILE labor�neg

setenv SHOW�ATTR�INFO yes

info

The output is�

Data � Test �� All

Number of instances in labor�neg	all � 
�

Duplicate or conflicting instances � �

��



Number of instances in labor�neg	data � ��

Duplicate or conflicting instances � �

Number of instances in labor�neg	test � ��

Duplicate or conflicting instances � �

Class probabilities for labor�neg	all file

Probability for the label �good� � ��	���

Probability for the label �bad� � �
	���

Majority accuracy� ��	��� on value good

Number of attributes � �� �continuous � � nominal � ��

Information about 	all file �

� distinct values for attribute �� �duration� continuous

�� distinct values for attribute �� �wage increase first year� continuous

�
 distinct values for attribute �� �wage increase second year� continuous

� distinct values for attribute �� �wage increase third year� continuous

� distinct values for attribute �� �cost of living adjustment� nominal

� distinct values for attribute �
 �working hours� continuous

� distinct values for attribute �� �pension� nominal

� distinct values for attribute �� �standby pay� continuous

�� distinct values for attribute �� �shift differential� continuous

� distinct values for attribute �� �education allowance� nominal

� distinct values for attribute ��� �statutory holidays� continuous

� distinct values for attribute ��� �vacation� nominal

� distinct values for attribute ��� �longterm disability assistance� nominal

� distinct values for attribute ��� �contribution to dental plan� nominal

� distinct values for attribute ��� �bereavement assistance� nominal

� distinct values for attribute ��
 �contribution to health plan� nominal

��� Bias�Variance Decomposition

The biasVar provides a bias�variance decomposition as described in Kohavi � Wolpert �������

Option name Domain Default Explanation

NUM TEST INST integer � Choose the number of test instances or se�
lect zero for a test fraction�

TEST FRACT real ������ Fraction of instances to reserver as test set�

INTERNAL TRAIN FRACT real ��� Internal split of training set�

TRAIN TIMES integer �� Number of replicates to form�

REPEAT TIMES integer � Number of times to repeat replicate sets�

��� Categorize

The Categorize utility provides a way to categorize new unlabelled records using a persistent categorizer�

��
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Figure �� The learning curve for C	�� on soybean�large

Option name Domain Default Explanation

Option name Domain Default Explanation

CAT NAME �lename The persistent categorizer name which con�
tains the categorizer� A ��cat� su�x will be
appended� Generated by the Inducer util�
ity�

DUMPSTEM �lename The �lename to contain the predicted la�
bels� one per line�

��� LearnCurve

The LearnCurve utility generates a learning curve for a given induction algorithm and a dataset� Given a
dataset� the x�axis represents the number of training instances and the y�axis represents the accuracy when
trained on the given number of instances and tested on the unseen instances�

Option name Domain Default Explanation

NUM INTERVALS int � � �� Number of intervals on the x�axis� Samples
points are approximately equally spaced�

NUM REPEATS int � � � Number of times to run the induction algo�
rithm for each sample point� The higher the
number� the smaller the standard deviation
of the mean�

�




Option name Domain Default Explanation

MIN TEST SIZE int � � � Minimum number of dataset instances to
save for testing� If �� then this number is
set to be the number of instances divided
by the number of intervals�

SEED int ����� Seed for creating samples�

DUMPSTEM �lename none Stem to dump training sets created� The
test set is always the full �le� This allows
comparing results with other induction al�
gorithms outsideMLC���

LC OUTPUT TYPE none�
mathe�
matica�
gnuplot

none Output data suitable for mathematica or
gnuplot� For mathematica� the �le Learn�
Curve�m can be used with the generated
output�

Example � �Learning Curve
To generate a learning curve for the performance of C	�� on the soybean�large dataset� one can do�

setenv INDUCER C���

setenv DATAFILE soybean
large�all � This contains the full dataset

setenv NUM�INTERVALS � � number of intervals on X
axis

setenv NUM�REPEATS �� � number of runs at each point

setenv MIN�TEST�SIZE ��� � leave at least ��� for testing

setenv DUMPSTEM � no dump stem

setenv LC�OUTPUT�TYPE gnuplot

LearnCurve

gnuplot soybean
large�gnuplot

The output is�

Inducer� c���� Intervals� �� Repeats� ��� Min test size� ���� Seed� ������

DATAFILE� soybean
large�all �size	����

Size� Acc� std
dev of mean

�� ����� �
 ����

��� ������ �
 ����

��� ������ �
 �����

��� ������ �
 �����

���� ������ �
 ����

��� ������ �
 �����

���� ������ �
 �����

���� ������ �
 �����

���� ������ �
 �����

�� ������ �
 �����

� ������ �
 �����

�� ������ �
 �����

�� ������ �
 �����

�� ����� �
 �����

��� ����� �
 �����

��� ������ �
 �����

���� ����� �
 ����

���� ������ �
 �����

���� ������ �
 �����

Gnuplot output in soybean
large�gnuplot

Figure � on the preceding page shows the gnuplot graph generated by LearnCurve�

�	



��	 C��Tree

The C��Tree utility will run C	�� and generate �les based on the DATAFILE with �unpruned�dot and
�pruned�dot su�xes� These can be viewed using dot or dotty� If the option DISPGRAPH is yes� the graphs
will pop up using dotty�
Limitations� DIST DISP should not be set to yes� and subset splits ��s in C	��� are not implemented�

��� Project

The project utility allows projecting a dataset into a space containing only a subset of the attributes �the
rest of the attributes are discarded�� This set of attribute numbers to project on is queried when the utility
is executed� The names �le� data �le� and test �le are all converted to the projected space�

Example � �Feature Subset Selection Feature subset selection on Table�majority inducer found that
out of �� bits used in the DNA splice�junction dataset used in the StatLog project �Taylor et al� ���	�� a
small subset of �� bits were most useful for Table�majority �Kohavi ����a�� To generate this subset� one
can project on the features numbered �� 
� 	� �� ��� �
� �	� ��� ��� ���� ��	� The performance of
Table�majority is �	��� �on the independent test set�� versus ����� for C	�� when given all the attributes�

��� Discretization

The discretize utility provides discretization ability� See Section ��� for a description of available options�

Note that discretization must be done using the training set only�

This utility indeed only looks at the training set to form the intervals� and these intervals are used to
discretize both the training set and the test set� It is a mistake to discretize all the data and then to run
cross�validation� because the discretization intervals will then be chosen based on the internal folds that
serve as test sets� TheMLC�� disc��lter will do the right thing if used within cross�validation� i�e�� for each
of the cross�validation folds� di�erent intervals will be formed as if these were training and test sets�

���� Conversions

The conv utility provides simple conversions of the data for algorithms that do not deal well with categorical
attributes or that require a slightly di�erent input format� Two encodings for nominal attributes are provided�

Local encoding Each value of a categorical attribute is made into an indicator attribute� For a given value
in the data �le� the appropriate indicator attribute is set to one� and all other indicator attributes that
share the representation are set to zero� An unknown value causes all indicator attributes to be zero�

Binary encoding A categorical variable with k possible values is assigned into dlog��k  ��e bits� Value i
is mapped into the binary representation of i �� and the binary zero is allocated for unknown values�

Option name Domain Default Explanation

CONVERSION local�
binary�
none�
aha

local See above� The �Aha� format converts to
David Aha�s IBL programs format �Aha
������

ATTR DELIM space�
comma�
period�
semicolon�
colon

comma the attribute delimiter�

��



Option name Domain Default Explanation

LAST ATTR
DELIM ditto comma The last delimiter before the label�

END OF
LINE DELIM ditto period End of line marker�

NORMALIZATION none�
normalDist

none NormalDist normalizes the continuous at�
tributes to have mean �� variance �� If there
is only one element� the variance is assumed
to be �� A variance of zero is modi�ed to
be �����

���� General Logic Diagrams

General Logic Diagrams �GLDs� are graphical projections of multi�dimensional discrete spaces onto two
dimensions� They are similar to Karnaugh maps� but are generalized to non Boolean inputs and outputs�
A GLD provides a way of displaying up to about ten dimensions in a graphical representation that can be
understood by humans� GLDs were described in Michalski ����� and later used in Wnek� Sarma� Wahab
� Michalski ������� They were used in Thrun et al� ������ and in Wnek � Michalski ����	� to compare
algorithms� GLDs have a long history and have been rediscovered many times� They are sometimes called
Dimensional Stacking �LeBlank� Ward � Wittels ������

GLDs will only work with inducers� not base inducers�

Each possible instance in the space de�nes exactly one box in the GLD� The GLD utility has the following
display options �GLD SET��

Test Show the test set instances with their classes�

Overlay Show the test set instances� The display shows correct or incorrect prediction by the categorizer�

Predicted Train Show the full predicted space and overlay the training set classes� You must have a
color�grey�scale display�

Predicted Test Show the full predicted space and overlay the test set instances� showing the mistakes as
X�s� You must have a color�grey�scale display�

The output of the GLD utility can either be an X window popup or a �le that can be read using X�g�
The main advantage of the X�g output is that the attribute names and other comments may be added and
then inserted into a document� There are currently only eight colors and they begin to cycle if there are
more classes�

Option name Domain Default Explanation

GLD MANAGER Motif�X�g Motif Display the output to an X window or generate
X�g output in GLD��g�

GLD SET test� overlay�
predicted�
Train�
predicted�
Test

predicted�
Test

What to show in the GLD �see above��

��



Option name Domain Default Explanation

GLD MANUAL
ORDER

yes� no no Restrict the inducer and the display to a given
set of attributes with manually speci�ed order�
ing on the axes�

GLD FONT font �x�� The font to use if the manager is Motif� The
smaller the font� the more of the attribute value
will �t in the designated boxes�

GLD HORIZ�
ONTAL MARGIN

int 
�� How much space �pixels� to leave on the left
side of the diagram for the labels�

GLD VERT�
ICAL MARGIN

int ��� How much space �pixels� to leave on the bot�
tom of the diagram for the labels�

GLD HORIZ�
ONTAL PIXELS

int 	�� Horizontal size of diagram in pixels� excluding
margins�

GLD VERT�
ICAL PIXELS

int 	�� Vertical size of diagram in pixels� excluding
margins�

GLD COLOR
DISPLAY

yes�no yes Di�erent shapes have di�erent colors� Most
Postscript printers do a good job of grey�scales
with colors� For PredictedTrain�Test combi�
nations� you must have a color display�

GLD COLOR FILL yes�no yes Use shapes or �ll in the box with a color� Only
relevant if COLOR DISPLAY is yes�

GLD OUTFILE �lename GLD��g The �le name to output if the display manager
is X�g�

GLD MAX
LINE WIDTH

int 	 The thickness of lines in the GLD is determined
by the position of the line� Line �i has width
i� unless i is greater than this parameter�

GLD ALT
COLOR SCHEME

yes�no no An alternate coloring scheme� which sometimes
works better�

Example 	 �General Logic Diagrams
We now show the four di�erent sets displayable in the GLD� The four GLDs are shown in Figures � and ��

setenv INDUCER ID�

setenv DATAFILE monk�

setenv GLD�MANAGER xfig

setenv GLD�OUTFILE monk��GLD�test	fig

setenv GLD�SET test

GLD

setenv GLD�OUTFILE monk��GLD�overlay	fig

setenv GLD�SET overlay

GLD

setenv GLD�OUTFILE monk��GLD�predTrain	fig

setenv GLD�SET predictedTrain

GLD

setenv GLD�OUTFILE monk��GLD�predTest	fig

setenv GLD�SET predictedTest

GLD

��



The output is�

Generating GLD for monk�	data

Classifying �� done�� ��� ��� ��� ��� 
�� ��� ��� ��� ��� ���� done	

Generating GLD for monk�	data

Classifying �� done�� ��� ��� ��� ��� 
�� ��� ��� ��� ��� ���� done	

Generating GLD for monk�	data

Classifying �� done�� ��� ��� ��� ��� 
�� ��� ��� ��� ��� ���� done	

Generating GLD for monk�	data

Classifying �� done�� ��� ��� ��� ��� 
�� ��� ��� ��� ��� ���� done	

� Useful Scripts and Tricks

	�� Comparing two Inducers

Here is an example of a shell script that compares ID
 with a bagged ID
� Because ID
 is very unstable�
large improvements can be seen for some �les� For this script� monk� improves from ����� to ������� crx
improves from �	���� to ������� and waveform improves from ������ to �����

�!�bin�tcsh

�Script to compare bagging of ID�

� first time� log �" otherwise� log �

setenv LOGLEVEL �

foreach i �monk� crx waveform����

echo ������������������� #i ������������������������

setenv DATAFILE #i

setenv INDUCER id�

Inducer

setenv INDUCER bagging

setenv BAG�INDUCER id�

Inducer

setenv LOGLEVEL �

end

	�� Conversions

Here is an example of a shell script that compares a perceptron with a bagged perceptron� The �le datasets�txt
should contain a list of �le names to compare� The data�le is �rst converted to local encoding using the
conv utility� then an inducer is run and then bagging is done�

�!�bin�tcsh

�Script to compare bagging of perceptron	

set ind � perceptron

setenv MAX�EPOCHS �


setenv BAG�REPLICATIONS ��

setenv REMOVE�UNKNOWN�INST yes

setenv LOGLEVEL �

foreach i �$cat datasets	txt$�
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Figure �� GLD for ID
�monk�� Set�test on the top and Set�overlay on the bottom�
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set file � $basename #i %	all$

echo ������������������� #file ������������������������

setenv DATAFILE #file

setenv DUMPSTEM �tmp�a

conv

setenv DATAFILE �tmp�a

setenv INDUCER #ind

echo �n �#ind �

Inducer & grep Accuracy

setenv INDUCER bag

setenv BAG�INDUCER #ind

echo �n �Bagged #ind �

Inducer & grep Accuracy

setenv LOGLEVEL �

end

	�� Converting Files for External Inducers

If you want to use one of the external inducers directly �e�g�� PEBLS� OC�� Aha�s IB� then you need to
convert the data �les to their format� One simple trick is to de�ne a two line script in your directory that
contains a single exit statement that returns a bad status� For example� to get a �le in PEBLS format you
can do�

echo �exit ��  pebls

chmod a�x pebls

setenv INDUCER pebls

Inducer

The inducer will abort with an error message indicating the command line used to call pebls� The line will
contain the name of the temporary �le names used� which you can then rename�
Note� for this trick to work properly� your path must contain the current directory before the !MLCDIR

directory� Do �which pebls� to verify that it is indeed the above script that will get executed� Don�t forget
to remove the �pebls� �le when you�re done�

� Mastering Options

This section describes in detail the special option values that can be used�

��� Special Values

Options can take on special values as follows�

� Force prompting of the given option� regardless of the prompt level� This is useful if you want to set the
value of an option� without being prompted for other options� Speci�cally� this will cause prompting of
nuisance options� Note that because most shells have special meanings for a question mark� the value
must be quoted�

setenv OPTION ���

��� Force the option to theMLC�� default value and avoid prompting for it unless the PROMPTLEVEL is
set to �all�� If there is no default value� the program will abort�

value� The value preceding the exclamation mark will be treated as a default� and the status of the option
will be changed to nuisance� avoiding further prompting in the basic prompt level� Use this feature to
avoid prompting for an option you do not want to change when doing multiple runs� For example�
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setenv CV�FOLDS �
!�

��� String Options

Options that require a string value are treated specially because the empty string is sometimes allowed as a
choice� Here are the di�erences�

�� setenv OPTION �no value set� will set the option to the empty string� For other options� this is treated
as if the environment variable is not set at all�

�� setenv OPTION � � does the same as above�


� Typing � � at the prompt sets the option to an empty string�

	� If the option has no default and the user hits return� the option will be set to the empty string �i�e��
the empty string is the default for string options which appear to have no default��

��� The Option Dump File

When a program is running� option values that are required for the particular execution are output into the
dump �le the same way they were input� There are several rules governing dump �le behavior�

�� If an option was set via setenv� then a similar setenv string will appear in the dump��le� including
options using ����

�� If an option was prompted� then the user has some control over what will appear in the dump��le�

�a� Typing a value will place that value into the dump �le� If the option was a nuisance option� then
the value will be followed by ����

�b� Typing a value following by ��� will accept the value and place ��� after the value in the dump �le�

�c� Typing �return� to accept the MLC�� default will place an unsetenv OPTION�NAME in the
dump �le� which will cause similar behavior if the dump �le is sourced�

�d� Typing ��� at the prompt will accept the default but place a ��� in the dump �le� causing the option
not to be prompted if the dump �le is sourced�
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A Installation	 Registration	 Questions

A�� Legal Issues

SGIMLC�� is provided �as is� without warranty of any kind� either expressed or
implied� No one who has been involved in the creation� production� or delivery
of this software and documentation shall be liable for any direct� incidental�
or consequential damages resulting from use of the software or documentation�
regardless of the theory of liability�

The entire risk as to quality� performance� or results due to use of the software
is assumed by the user� and the software is provided without obligation of any
kind to assist in its use� modi�cation� or enhancement�

SGI MLC�� is research domain� The speci�c terms detailing its use can be
found in

http���www�sgi�com�Technology�mlc�terms�html

External inducers� for which we provide interfaces� have other restrictions�
please contact the authors of those tools for speci�c permissions�

A�� MLC�� Installation

MLC�� utilities are available through the world wide web at URL

http���www	sgi	com�Technology�mlc

Since version ��
� the object code for the utilities is provided for Silicon Graphics hardware running IRIX
��
 or ����
Databases from UC Irvine that have been converted to our format �compatible with C	��� are in

ftp���starry	stanford	edu�pub�ronnyk�mlc�db

Please look at the README �le that comes with the distribution�

A�� Questions� Problems� Bug Reports

Please �ll in the registration form at URL http���www�sgi�com�Technology�mlc�mail�html The pur�
pose of the registration form is to let us know who is working on MLC��� and to allow you to optionally
join a mailing list for discussions of problems�
Please look at the �known bugs� item in the MLC�� home page for descriptions and workarounds of

known bugs �http���www�sgi�com�Technology�mlc��
Questions� help requests� and bug reports should be addressed to mlc postofc	corp	sgi	com� For bug

reports� please execute the utilities with LOGLEVEL set to � or higher� and with DEBUGLEVEL ��
Comments on this document� suggestions on how to improve the utilities are encouraged�

A�� Dot and Dotty

MLC�� interfaces dot and dotty from AT�T �Koutso�os � North ���	�� These programs allow you to
display graphs on the screen and to generate postscript for printing and inserting into documents�
A web server is available to download graph viewing tools� You can obtain precompiled binaries and

source for dot� dotty� and some associated programs� The URL is

http���www	research	att	com�sw�tools�reuse�

Click on source or binary� If you accept the no�cost non�commercial license� then you�ll be presented with
a form to �ll in� and then �nally hotlinks from which to download the archives�
Please direct dot�dotty related questions directly to Stephen North �north"research�att�com��
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A�� ReferencingMLC��

A paper onMLC�� will be published in the Tools with Arti�cial Intelligence conference �Kohavi� Sommer�
�eld � Dougherty ������ Please use it as the reference to MLC�� if you are using some of the utilities
provided byMLC�� and would like to acknowledge this fact� LATEX users can add the following to their bib
�le�

 inproceedings�mlc�new�intro�

author � �Ron Kohavi and Dan Sommerfield and James Dougherty��

title � �Data Mining Using �MLC���� A Machine Learning Library in �C�����

booktitle��Tools with Artificial Intelligence��

year � �����

pages � �To Appear��

note� �%texttt�http���www	sgi	com�Technology�mlc���

publisher��IEEE Computer Society Press��

The LATEX macros to displayMLC�� is�

%newcommand�%mlc��%ensuremath�%mathcal�MLC%hspace��	�
em�%raisebox�	�ex��%tiny%bf ������

B Common Error Messages

Shown below are common error messages and their explanations�
If there is a problem in parsing an input �le� just SETENV LOGLEVEL �� and you will see how each

attribute is being parsed� This usually su�ces to solve the problem�

�� �����Inducer� rld� Fatal Error� cannot successfully map soname

�libMWrapper	so� under any of the filenames

�usr�lib�libMWrapper	so��lib�libMWrapper	so

MLC�� uses dynamically shared objects� The runtime loader must know where these are through the
environment variable LD LIBRARY PATH� Add

setenv LD LIBRARY PATH ��usr�lib��lib�!MLCDIR�

After you set MLCDIR to theMLC�� directory� Another alternative is to move all the �les ending with
	so into �usr�lib�

�� Error � LinearDiscriminant��LinearDiscriminant� Number of categories � !� �	

The inducer you are running attempts to generate a LinearDiscriminant for more than two categories�
Remember that perceptron and winnow are limited to two�class problems�


� sh� c�	
� not found

C�	
 program returned bad status	 Line executed was

c�	
 �u �f �tmp�aaaa�����	MLC & awk �f #MLCDIR�c�
test	awk			

The csh or tcsh variable path does not include the c	�� executable�

	� sh� awk� not found

C�	
 program returned bad status	 Line executed was

c�	
 �u �f �tmp�aaaa�����	MLC & awk �f #MLCDIR�c�
test	awk			

The environment variable #MLCDIR is not de�ned to be the path whereMLC�� is installed� Speci�cally�
c	� results are parsed using the c	�test�awk script�
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�� Error � FileNames��test�file� No TESTFILE specified	

A TESTFILE must be speci�ed if the DATAFILE ends with the ��all� su�x� If you are following the
MLC�� naming conventions� then you are probably doing something wrong� A ��all� su�x indicates
that all your data is in the given �le� so no TESTFILE should be available� You may be running the
Inducer utility instead of the AccEst utility�

�� Error � mlcIO��file�exists� File �	names� does not exist in colon separated

paths �	��u�mlc�db��	

An empty DATAFILE was given�

C Di
erences from Previous Versions and Known Bugs

C�� Di�erences from �����

�� The main change is the policy regarding the status of MLC��� SGI MLC��� which is MLC�� ���
and above is not public domain anymore� but research domain� This means that it can be used for
research purposes but cannot be used in any commercial product without prior agreement from Silicon
Graphics� For more details� see theMLC�� home page�

�� The preferred reference to MLC�� changed from Kohavi� John� Long� Manley � P�eger ����	� to
Kohavi et al� �������


� The distribution is compiled in FAST mode� which is about 
�� faster than non�fast mode �non�fast
mode was the mode previously distributed��

	� The utilities distribution is given using dynamically shared objects that save space� The compressed
tar �le is now about half the size of the last version�

�� Persistent categorizers are now supported� Persistent decision trees and Naive�Bayes are implemented�
This allows a categorizer to be saved and later read in� Assimilation code allows instances with more
attributes than required by the categorizer to be assimilated and categorized�

�� Decision trees were improved as follows�

�a� Decision trees now provide pruning in a way similar to C	��� Branch replacement is not being
done and the fudge factors �C	�� adds ��� in certain places are not in the code�� The MC� inducer
defaults to a setting very similar to C	���s setting�

�b� A new option� adjust thresholds� allow splits in decision trees to be adjusted to actual data
elements as in C	��� The option is implemented much more e�ciently than in C	���

�c� Quinlan�s MDL penalty for continuous attributes �C	�� rel � is now available�

�d� Gain ratio is supported as a splitting criterion� This is implemented exactly as the C	�� version
�with all the hacks�� so that except for unknown handling and tie breakers� the unpruned trees
are the same�

�e� More statistics are provided about the number of attributes and depth of tree�

�f� Improved output for MineSetTM Tree Visualizer�

�� Naive�Bayes changes�

�a� Naive�Bayes uses a value of � as a default for NO MATCHES FACTOR� which is the value used when
there are no records matching a given attribute value and label value� This was made to make the
probability distribution consistent and �surprisingly�� results sometimes improve� The previous
default was ��� over the number of instances�






�b� Naive�Bayes now supports Laplace corrections�

�c� Naive�Bayes now outputs MineSetTM Evidence Visualizer format �les�

� The biasVar utility has been added for the bias�variance decomposition based on Kohavi � Wolpert
�������

�� NBTree described in Kohavi ������ can be setup with the following parameters�

setenv INDUCER catdt

setenv CATDT�LEAF�INDUCER naive

setenv LBOUND�MIN�SPLIT ��

setenv CATDT�CV�FOLDS �

setenv CATDT�CV�TIMES �

setenv CATDT�LEAF�NB�NO�MATCHES�FACTOR 	 ���

setenv IMPROVE�RATIO ����

��� A �dribble� support was added to show progress on big �les� Dribble is done for decision trees and
discretization�

��� Unlabelled instance lists are partially supported� The syntax is to say �nolabel� in the names �le�

��� Options in OODG allow you to build an oblivious decision tree to determine the cumulative purity of
chosen attributes�

�
� Control�c and kill signals are caught and handled� A cleanup of temporary �les is done�

�	� Governors remove attributes with too many values and avoid runs with too many label values� These
limits are arti�cial and can be increased by changing the appropriate options in the message� With this
change� dynamic projections of instance lists are allowed during reading �mainly an e�ciency issue��

��� Misc changes�

�a� The URL for dotty has change with the breakup of AT�T�

��� Major source code changes�

�a� At the source level Bag� BagCounter� List� and CounterList have been uni�ed into one smart
class� making a lot of the programming easier�

�b� The GNU library is not being used any more�

�c� Code is available to upload data into a database �Oracle� Sybase� and Informix variations are
available� through database loaders �not a straight load� but the sql �les are written out��

C�� Di�erences from ���

�� Decision tree induction can now output to the tree visualizer from SGI�s MineSet�

�� Utilities now support command�line �ags �options� as described in Section ��


� Names �les now support �discrete� as a description for nominal attributes� As data is read� the list of
values is dynamically added� Values in the test set that were not seen are considered unknown�

	� The C	�Tree utility now supports the DIST DISP option for displaying the distribution at every node�

�� The �info� utility now gives the majority accuracy�

�� Temporary �les are now erased on interrupts� The environment variable KEEPTEMP can be set to
�yes� to override this behavior�


�



�� Heuristics for determining the number of bins for discretization were added�

� A new discretization option �t��disc� was added� T� is now given with the distribution �for discretiza�
tion��

�� A new discretization option �c	���disc� was added�

��� CN� algorithm is now given with the distribution� We thank Rick Kufrin from NCSA for modifying
the original CN� so that it easily compiles on SGI�

��� Discretization intervals were changed to conform with C	��� The left branch is now � instead of ��

��� Weights in nearest neighbor can be set �manually�� i�e�� through user input�

�
� The C	�test�awk script is no longer used nor needed�

C�� Known Bugs

�� Trimming doesn�t work properly in accuracy estimation�

�� If FSS ACC ESTIMATOR is set to �test� in feature subset selection then you�ll get�
Error � AccData��check real� real accuracy is undefined	

The workaround is to do setenv FSS SHOW REAL ACC always

	�
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