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Abstract. Head tracking is an important primitive for smart
environments and perceptual user interfaces where the poses
and movements of body parts need to be determined. Most
previous solutions to this problem are based on intensity im-
ages and, as a result, suffer from a host of problems includ-
ing sensitivity to background clutter and lighting variations.
Our approach avoids these pitfalls by using stereo depth data
together with a simple human-torso model to create a head-
tracking system that is both fast and robust. We use stereo
data1 to derive a depth model of the background that is then
employed to provide accurate foreground segmentation. We
then use directed local edge detectors on the foreground to
find occluding edges that are used as features to fit to a
torso model. Once we have the model parameters, the lo-
cation and orientation of the head can be easily estimated.
A useful side effect from using stereo data is the ability to
track head movement through a room in three dimensions.
Experimental results on real image sequences are given.

Key words: Security – Surveillance – Human motion –
Human–computer interaction

1 Introduction

Human-head tracking has been an area of active research in
computer vision for several years. The termhead tracking,
however, means different things to different people. Some
think of it as the problem of figuring out not only the loca-
tion of the head but also the 3D pose and sometimes even the
complex facial expressions. Much research has been devoted
to this difficult problem [26, 27, 28, 6, 29, 30, 31, 32, 33, 5].
We will, however, focus our efforts on a simplified version
of this problem: the determination of 3D position and 2D
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orientation of the head in a sequence of images. Head po-
sition and orientation are important parameters for a variety
of applications including virtual reality and teleprescence
[1, 16, 17, 18, 19, 20, 21], augmented reality [22, 23], face
recognition [2], voice recognition [24], audio equalization
zone steering [25] and perceptual user interfaces [15].

2 Background

There has been very little work on head tracking using
stereo. Until recently, systems that produce real-time, stereo
depth data have been unavailable on the commercial mar-
ket. As a result, most approaches to this problem have relied
exclusively on intensity images must use color cues and in-
tensity edges for face–head detection and tracking. In [4],
they use color histograms and intensity gradients together
with a second-order motion model and a local search to
track skin-colored, elliptical face blobs. Similar methods are
used by other researchers to track skin-colored blobs with
various additions. In [34], they also add in a hypothesis-tree
model to explicitly handle occlusions. [35] adds a blink de-
tection module to augment the power of the color module,
[36] uses a best-fit ellipse energy function to more accurately
classify skin-colored regions as faces, [37] uses acoustical
information to constrain the color information and [38] adds
mouth-shape features to the color module. More recently
systems that rely exclusively on color models have been
pursued [39, 41, 40].

Not all methods track blobs of skin color, though. [42]
and [15] track the contour of the head and shoulders using
image intensity gradients. [43, 9, 44, 45, 7] use combinations
of skin-color models, template models and various other cues
to help detect and track heads. A less typical approach is
the use of a variable numbers of wavelets to track intensity-
based face templates [46].

All of these approaches, by virtue of their reliance on
intensity and color information, are notoriously sensitive to
environmental factors that affect intensity values such as
changes in illumination or background clutter. Recent work
in adaptive mixture modeling [48] may mitigate these ef-
fects somewhat, but they still cannot effectively handle self-
shadowing and situations where the foreground and back-
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ground are similar. In addition, they cannot, in general, han-
dle the full range of possible skin tones. Stereo depth cal-
culations, however, do not encounter these problems. This
observation, coupled with recent advances in stereo hard-
ware that allow us to gather depth data in real time [10],
suggests a new approach to the head-tracking problem.

There has been very little work done on head track-
ing using stereo. Some systems [11, 8] use stereo but still
rely heavily on skin-tone pixel extraction, an intensity-based
measure subject to all of the aforementioned problems. One
approach [14] uses only stereo data, but its complicated mod-
els prevent tracking of rapid movements and so require the
user to move slowly. In addition, this algorithm also requires
a manual initialization step.

3 Basic idea and motivation

Our approach is to use stereo data to perform a more accurate
foreground segmentation. We then use depth and intensity
information to fit a simple torso model to the foreground,
looking specifically for the occluding edges of the shoul-
ders. Because the model is so simple, we can perform the
fit to each frame separately without having to use traditional
tracking techniques to limit the search space. This means that
our tracker will not get confused as easily by rapid move-
ments or temporary occlusions. Another important benefit
of using stereo depth data is that, once we find the head in
the depth image, if we know the cameras’ focal lengths and
baselines, we can easily determine its position in 3D world
coordinates.

We hope to use this information in several ways. For
one, this is an important complement to a smart room where
knowing the 3D position of a user’s head is a way to steer
a microphone array to listen in that direction. We would
also like to use it as a first step in the bootstrapping of a
more complicated, articulated motion tracking system that
can perform human-gesture recognition. In addition, work is
underway to use this system to provide real-time, 3D head
coordinates as an input to a face recognition algorithm sim-
ilar to the one in [2].

The paper is organized as follows. Section 4 will discuss
the algorithm for segmentation in detail. Section 5 will de-
scribe our torso model and its parameters, while Sect. 6 will
discuss how we acquire that model in each frame. Section
7 presents our head localization algorithm. Our results and
conclusions will be presented in Sects. 8 and 9, respectively.

4 Segmentation

Our system begins with a segmentation of the human figure
in the foreground of our image sequence. Conventional ap-
proaches using intensity images [7] create a Gaussian model
of the intensity over a certain interval of time of each pixel
in the background and then determine whether a pixel is part
of the foreground based on its distance from the background
in the chosen color space. This method has two important
limitations. First, it is extremely sensitive to variations in
lighting conditions. For example, if the lighting suddenly
changes, the background model is no longer valid and the

resulting segmentation is incorrect. Second, the effects of
shadows are very difficult to handle. If the foreground fig-
ure casts a shadow, the darkened region could differ enough
from the background to be classified as foreground. In addi-
tion, if the foreground figure happens to be similar in color
to the background, it will be classified as background.

4.1 Using depth data

The use of stereo eliminates the aforementioned problems.
With depth images, we proceed as before, modeling each
background pixel as a Gaussian with a meanµ and a stan-
dard deviationσ. This time, however, we build the model
with depth instead of intensity values. Closely following the
work of [12], once we build a depth model of the back-
ground, we can identify the foreground as any region where
the depth is sufficiently closer to the camera than the back-
ground. This is much more physically intuitive than the in-
tensity segmentation and more accurate as well. Because the
nature of the stereo correlation calculation makes it insen-
sitive to color, shadows, or lighting variations, we do not
have to worry about the previous problems.

The segmentation, however, is not quite this simple.
Stereo matching is extremely sensitive to image texture. In
our case, the correlation-based stereo system has a great deal
of difficulty operating in regions where there is little texture.
For example, consider a blank wall. A stereo system attempt-
ing to correlate pixels in such an untextured region will have
a difficult time finding the correct matches as all pixels look
alike. The result is an area of incorrect matches yielding dis-
parities more or less randomly distributed throughout a range
dependent on the size of the correlation window. This noise,
depicted in Fig. 1 is neither Gaussian nor white, making it
very difficult to model.

Unfortunately, this adversely affects our segmentation
as we cannot effectively model the background in regions
without adequate texture. We can, however, identify those
background pixels that are unreliable with a simple test of
our model’s standard deviation: ifσij > β where β is a
user-defined threshold (we usedβ = 2). To combat this prob-
lem in untextured regions, we devised our own segmentation
scheme, closely related to [12] but with an important addi-
tional validation step.

4.2 Surface validation segmentation

Once we have modeled the background, we face the prob-
lem of picking out the foreground in a new disparity2 image

2 In the rest of the paper, we refer to disparity images obtained using
Digiclops; these are the depth images used in our experiments. Digiclops
is a commercial stereo system from Point Grey Research. It uses three
cameras to do multiple-baseline stereo disparity calculation. Calibration is
done in the factory and, according to Point Grey, the input images are
rectified to fit an ideal stereo camera model within 0.06 pixels. The system
also has a calibration retention system that makes it robust to shocks and
vibrations. Noise is also an issue with these systems; however, the image
transmission in Digiclops is completely digital (via an IEEE 1394 interface),
which removes the problems of frame-grabber jitter and analog-to-digital
conversion noise. That said, Digiclops suffers from the same limitations of
every other stereo system: it does not perform well in areas without much
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Fig. 1. Top: Sample input image from camera.White square highlights
region with little texture.Middle: Disparity image from the Digiclops Stereo
System from Point Grey Research, Inc. Note noise in the highlighted region.
Bottom left: Reconstruction of physical surface based on disparity values
in highlighted region (negativez axis trends away from camera).Bottom
right: Reconstruction of physical surface based on region centered inside
of the human figure in the middle

DI. In the case where a pixel of the foregroundDIij is
in front of a reliable background pixel (σij < β), we have
demonstrated that the segmentation is simple. All we must
say is that a pixel is part of the foreground if the disparity
value at that point is in front of the mean background by
more than a standard deviation. When we are dealing with
an unreliable background pixel (σij ≥ β), things get much
more complicated. In these cases, sinceµij is not a reliable
representation of depth, we cannot know based only on the
value of DIij whether that pixel is in front of the back-
ground or not. Here we make an important assumption: the
foreground figure must consist of a smooth blob of pixels
with similar disparity values. In other words, it should be
distinguishable from untextured background in that its dis-
parity values suggest a surface that is smooth and realistic
like that in Fig. 1 bottom right, not noisy and spiked like

image texture, it does not handle specular reflections, and it cannot handle
occlusions.

the one in Fig. 1 bottom left. Assuming we can identify all
regions in an image that can be considered smooth phys-
ical surfaces, segmentation of the foreground is as simple
as identifying all such surface regions that occur in front of
the background. To find these surfaces, we use a modified
connected-components algorithm as follows:

1. ConsiderDI to be a graphG where every vertexGij

corresponds to a pixelDIij .
2. For each vertexGij , connect it to its four neighbors if

and only if
∑

n∈Nij
|Gij − Gn| < t whereNij is the

4-neighborhood of vertexGij and t is a user-defined
threshold. Since neighboring disparity values in untex-
tured regions differ by large amounts, there is a great
deal of latitude in choosing this threshold.

3. Connected components larger than a nominal size are
accepted as surfaces and all other pixels are ignored.
The size cutoff is also relatively easy to choose and is
based on the assumption that the human figure will take
up at least 10% of the image.

4.3 Segmentation algorithm

Thus, our segmentation algorithm is:

1. Using 20–30 images, model the background using a
Gaussian [µ, σ] for each pixel.

2. Based on the values for standard deviation, determine
unreliable background models by looking for pixels with
σ > β where β is a user-defined threshold (we used
β = 2).

3. For each subsequent disparity imageDI, calculate the
areas considered to be physical surfaces.

4. A surface pixelDIs
ij is classified as foreground if

a) the background is reliable at [i, j] and DIs
ij > µij +

σij

b) the background is unreliable at [i, j]
5. Finally, to eliminate all remaining noise, we run a binary

connected-components algorithm and extract the largest
component.

We have already looked at the first case in step 4, but the
second deserves a bit of explanation. When we classify the
background as unreliable, we are implicitly assuming that it
is located in an untextured region. This is a safe assumption
as it is generally only in those regions that the disparity value
would fluctuate so much from frame to frame. As a result,
the data in this region do not correspond to a physical surface
and would not aggregate into a connected component large
enough to classify as a surface. So, if we see a surface pixel
where we expect to find an unreliable background pixel, we
know that it must be part of the new foreground. Figure 2
illustrates these concepts.

5 Torso model

Once we have an accurate segmentation, we look to fit a
simple torso model to the foreground figure. The model is
based on the assumption that the figure is upright or leaning
slightly to one side, a reasonable assumption for our domain
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Fig. 2. Illustration of segmentation:a one of the images in the input se-
quence of background images;b disparity map output from Digiclops for
this image;c illustration of reliable (white) background pixels based on
the standard-deviation model (steps 1 and 2 of our algorithm);d new test
image for foreground segmentation;e results from surface validation (step
3) with surfaces shown (all regions except black) passing the validation
requirement;f final result of segmentation (steps 4 and 5)

of interest. Given this, we notice that the occluding edges
of the shoulders, heretofore referred to as themantle, are
strong cues that vary very little with respect to the motion
of an upright figure. Thus our torso model consists only of
five parameters, two for the straight line that captures the
general lean of the figure and three for the quadratic that
traces the outline of the mantle. Figure 3 shows the model
and its application to a real image. We loosely interpret the
intersection of the lean and the mantle as being the neck
point. This will be useful later to localize the head.

6 Model acquisition

Because we have such a simple model, it is relatively easy to
acquire. Given the segmented foreground figure as a binary
image, we take advantage of the depth information stereo
imaging gives us to help us extract the lean in the following
way:

1. For each rowi of the binary image, calculate the me-
dian of the column values of the foreground pixels. We
will call this value thehorizontal median. We use medi-
ans instead of means because they are less sensitive to

Mantle (3 params)

Lean (2 params)

Fig. 3. Top: Illustration of simple torso model.Bottom: Application of torso
model to image

Fig. 4. Illustration of the horizontal mean values (plus signs) vs. horizontal
median values (squares). Notice how much more the means are affected by
the waving arm

outliers in the foreground figure caused by waving arms
(Fig. 4).
In addition, we use a second level of outlier rejection
based on the perceived 3D position of the figure. To
do this, we need a rough approximation of the center
(Cfg) of the figure in three dimensions. If we can make
a reasonable guess about this point, we can ignore fore-
ground pixels that are too far away horizontally from
it (e.g. those belonging to waving arms). Since we are
using stereo and have access to depth data, we can de-
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Fig. 5. Example of thresholds (depicted asvertical bars) in action. The
dark circles represent the recalculated horizontal medians and theplus signs
represent the line that best fits them

Lean 1 2 3 4

Image     
Derivative

ntensity
Image     
Derivative

ntensity

Fig. 6. Top: Example of a directed local edge detector. The detail of the
figure shows examples of four of the slices along which the image gradient
is calculated. Thegray dots represent occluding edge points found by the
detector.Middle: Graph of 1D slice of the image intensity together with its
gradient along slice 1 of the edge detector above.Bottom: Same as above
except with slice 2 of the edge detector

Fig. 7. This image shows the lean, the mantle and a few examples of the
placement of the local edge detectors (gray rectangles). Also, thelight-grey
area above the mantle line represents points classified as being part of the
head. Thex represents the centroid (in image coordinates) of those head
points

fine the term ‘too far away’ in world space and not in
image space. This allows us to handle figures at any
depth and maintain scale independence without having
to resort to messy multi-resolution calculations. We make
our guess aboutCfg using the assumption that the ma-
jority of the lower area of the figure is usually evenly
distributed around the center of the figure, a reasonable
assumption for our domain of interest. This area encom-
passes a figure’s legs and lower- to mid-torso region,
and its horizontal medians are very seldom disturbed by
waving arms. We can get a value for the image coor-
dinates ofCfg by finding the centroid of the horizontal
medians calculated on the lowest 33% of the foreground
figure. Once we haveCfg in image coordinates, we can
use our depth data and the known camera parameters to
project this point into 3D world coordinates (Fig. 5).

2. Perform outlier rejection in the following manner:
– Set pixel threshold columns to the left (Tl) and right

(Tr) of Cfg by calculating the distance in pixels rep-
resented by world displacements ofα centimeters to
the left and right ofCfg, respectively. The idea here
is thatα should approximate the half-width of a stan-
dard human figure

– Using the thresholds, reject foreground pixel values
as outliers if their column component does not fall
within the left and right thresholds. Recalculate the
horizontal medians based on this new information.

3. Using a singular value decomposition (SVD) line fit, find
the best-fit line to the adjusted horizontal median values
for each row. That line is the lean.

In our experiments, we usedα = 25 cm, though there is a
fair amount of latitude in this choice. We used SVD line
fitting instead of other, less expensive approaches because
of its numerical robustness. Specifically, its stability makes
it a good deal less sensitive to perturbations of the data [49].
Figure 5 depicts an example of the lean acquisition.

Once we have the body lean, we can start acquisition of
the mantle. As we mentioned before, the strongest cues are
the occluding edges of the shoulders on either side of the
head. To find these, we employ directed local edge detec-
tors similar to those used in [13]. We orient these detectors
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frame 30 frame 40 frame 50 frame 60 frame 70

frame 80 frame 90 frame 100 frame 110 frame 120

Fig. 8. Results from a sequence of rapid head movements. The images were acquired at about 2 Hz so this sequence lasts about 45 s

frame 30 frame 35 frame 40 frame 45 frame 50

frame 55 frame 60 frame 65 frame 70 frame 75

Fig. 9. Results from a figure approaching and then walking away from the camera. The images were acquired at about 2 Hz so this sequence lasts about
22 s

perpendicular to the lean and look for edges by thresholding
the image gradient along slices perpendicular to the detec-
tor’s orientation (parallel to the lean). Figure 6 offers an
illustrated example of such an edge detector. To place these
detectors in the best position, we use the depth data of the
points along the lean to give us an estimate of how far the
figure is from the camera. Based on this information, we can
determine where, in image coordinates, to place the edge de-
tectors. More specifically, once we decide where in world
coordinates we would like to place the edge detectors, us-
ing our camera parameters we can project these points back
into image coordinates. For example, if the figure is close
to the camera, we are going to look for edges along a much
longer line than if it is further away. Figure 7 shows an
illustration of these concepts. We use the assumption that
the typical head is 0.2 m wide and that the typical mantle is
0.4 m across.

We place a series of these local edge detectors up and
down the image perpendicular to the body lean and keep a
running tally of how many potential edge points we find.
After searching the length of the body lean line, we select
the pair of trackers that yield the most edge points and, using
least squares, fit a quadratic to those points. That quadratic

is the mantle and represents the final three parameters of our
model.

7 Head localization

Once we have acquired a model, we calculate the intersec-
tion of the mantle and the lean, which we interpret as the
neck. We then look radially out from the neck at points in
the foreground that are:

– ‘above’ the mantle
– within a reasonable distance (0.2 m) in world coordinates

from the neck (again, we can do this because we are
working with 3D data)

After identifying such points, we calculate their centroid and
make the assumption that, regardless of tilt, this point will
represent the center of the head. We can now determine the
orientation of the head simply by calculating the angle made
by the line containing the head’s centroid and the neck point.
We assume that the distance between those two points is half
of the height of the head and can easily draw a box around
it (Fig. 7). Also, since we are using stereo, once we know
the centroid of the head region, we can easily figure out its
position in 3D.
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frame 56 frame 58 frame 60 frame 62 frame 64

frame 66 frame 68 frame 70 frame 72 frame 74

Fig. 10. Results from another rapid sequence of head and arm movements with a cluttered background. Notice the failure of the tracker (frame 58) when
the figure is turned too much to the side reducing the strength of the shoulder cues. The timing is the same as in Fig. 9

frame 10 frame 15 frame 20 frame 25 frame 30

frame 35 frame 40 frame 45 frame 50 frame 55

Fig. 11. More results from rapid sequence of head and arm movements with a different figure. The timing is same as in Fig. 9

8 Results

Figures 8–12 illustrate the results of our tracking scheme.
They were all recorded using the same values for the afore-
mentioned user-defined thresholds and parameters for each
experiment. The choice of these parameters was easy for
this particular domain and the experiments show that a sin-
gle choice can handle different people and different motions
in this domain. The sequences feature a variety of skin tones,
cluttered backgrounds and rapid head movements that would
be likely to confuse a tracker that relied on accurate predic-
tions based on past motion. Plotted on each image is our
acquired torso model as well as the orientation of the head.
Figure 8 shows the tracker’s ability to track changes in head
orientation. Similarly, Fig. 9 illustrates the tracker’s work
on a figure approaching the camera and then moving away.
Since we can adjust our algorithm using our knowledge of
the depth of the figure, we maintain scale independence with-
out any significant complications. Both figures also demon-
strate our tracker’s ability to work without any assumptions
based on skin tone. The figure’s dark skin is something that
would confuse many of the trackers that rely on the identi-
fication of skin-colored pixels.

Figures 10 and 11 show the tracker’s ability to work in
the presence of waving arms and image clutter. Figure 10
also shows one of the failure modes of the system. When the
assumption that the figure more or less faces the camera (a

reasonable assumption for our domain of interest) is violated,
the shoulder cues are not always strong enough to lead us
to the correct configuration of the model. Fortunately, since
our next step is entirely independent of the previous one,
we are not confused for long and reacquire the figure soon
after.

Figures 12 illustrates two failure modes of the tracker. At
the top, the figure comes too close to the edge of the field of
view so that our torso model cannot be acquired, and at the
bottom, the figure’s arms occlude the head and shoulders,
obscuring our most important cues. In both cases, a simple
tracker could easily get thrown off and have a difficult time
finding the target again. In our case, however, regardless of
where the figure is, we simply reacquire our torso model as
soon as it becomes available again.

Figure 13 shows one of the important side effects from
using stereo. Since we are using stereo and we know the
cameras’ intrinsic and extrinsic parameters, once we find
where the head is located in image coordinates, we can easily
turn that into a 3D point. As a result, we can track the
movement of the head throughout a room in 3D.

8.1 Performance

This system is run using a resolution of 320× 240 pixels
and the processing time per frame is approximately 1 s on a
dual 350 MHz Pentium II.
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frame 54 frame 55 frame 56 frame 57 frame 58

frame 102 frame 103 frame 104 frame 105 frame 106

Fig. 12. Top row: Failure and reacquisition when figure moves out of field of view.Bottom row: Failure and reacquisition when figure’s head and shoulders
are occluded. The timing is the same as in Fig. 9

0 0.5 1 1.5 2 2.5 3

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

HEAD POSITION
CAMERA       

CAMERA

Fig. 13. Bird’s eye view of head movement through room in sequence from
Fig. 11. Both axes are in meters

9 Conclusion

What we have shown is a new approach to head tracking
taking advantage of stereo depth data as well as the seg-
mentation accuracy real-time stereo affords. We have cre-
ated a simple torso model that is quick to acquire and does
not require accurate predictions between frames to work. As
a result, we can ignore the common assumption of small
interframe motions as well as the problems generated by oc-
clusions. We use this system to track heads in 3D throughout
a room.

9.1 Future work

As mentioned earlier, work is underway to use the results
of this algorithm as input to a steerable phased array of mi-
crophones in order to achieve more accurate voice recogni-
tion without the use of user-mounted microphones. Also, we
hope to use the 3D position of the head as input to a face
recognition algorithm or to bootstrap a more complicated
articulated motion tracker.

As for extensions of the algorithm itself, a relatively easy
one would be to track multiple heads in an image. This is
a simple matter of identifying all of the blobs in the fore-
ground and acquiring a torso model for each. Another exten-

sion under consideration is to add a very simple prediction
step that would reduce the computation time to acquire a
model but not sacrifice the robustness of our ‘one image at
a time’ system. We could also integrate this prediction step
as a separate module. In this way we might have the model
acquisition and prediction act independently and then use
a comparison function to decide which solution makes the
most sense. This could potentially eliminate failure modes
in which one of these approaches fails but the other does
not.

Other interesting extensions could be used to handle
more difficult failure modes. For example, if a figure is hold-
ing a large object that is occluding its shoulders, or if the
figure is occluded by another person, our algorithm will fail.
We would need to be able to either recognize that situation
and handle it gracefully or, potentially, perform a more intel-
ligent segmentation of the foreground into layers, recognize
the boundaries between them and ignore all pixels except
those actually belonging to the figure. This segmentation
would obviously require extensive work, especially to make
it recognize such complicated and smoothly varying bound-
aries in real time. However, advances in image segmentation
techniques suggest that it might not be out of reach [47].
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