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ABSTRACT

Registration of 2-D projection images and 3-D volume images is still a largely unsolved problem. In order to register
a pre-operative CT image to an intra-operative 2-D x-ray image, one typically computes simulated x-ray images from
the attenuation coefficients in the CT image (Digital Reconstructed Radiograph, DRR). The simulated images are
then compared to the actual image using intensity-based similarity measures to quantify the correctness of the current
relative pose. However, the spatial information present in the CT is lost in the process of computing projections.
This paper first introduces a probabilistic extension to the computation of DRRs that preserves much of the spatial
separability of tissues along the simulated rays. In order to handle the resulting non-scalar data in intensity-based
registration, we propose a way of computing entropy-based similarity measures such as mutual information (MI)
from probabilistic images. We give an initial evaluation of the feasibility of our novel image similarity measure for
2-D to 3-D registration by registering a probabilistic DRR to a deterministic DRR computed from patient data used
in frameless stereotactic radiosurgery.

Keywords: Probabilistic DRR, intensity-based image registration, mutual information, x-ray projection, CT, fuzzy
segmentation.

1. INTRODUCTION

Registration of two-dimensional (2-D) projection images to three-dimensional (3-D) volume images is still a largely
unsolved problem. However, there is a variety of clinical problems that can benefit from successful 2-D to 3-D
registration. One example is fluoroscopic navigation where the relative pose of the patient during surgery and
the pre-operative CT image is computed by registering the CT to one or several intra-operative fluoroscopic x-ray
projection images with known projection geometry parameters and calibrated image position. Another example is
radiation therapy, where the 2-D projection image is an electronic portal image (EPI)1 generated by the therapy
beam and typically detected using flat panel detectors.

In order to register a CT image to a 2-D projection image one typically computes a projection image from the
attenuation coefficients in the CT image (Digital Reconstructed Radiograph, DRR).2,3 This simulated image is then
compared to the actual image using intensity-based similarity measures to quantify the correctness of the current
relative pose. One of the major problems that make registration of 2-D projections to 3-D images more difficult
than 3-D-to-3-D image registration is that, due to the nature of projection imaging, spatial information is lost in the
imaging process. The resulting projection pixels are the superposition of different tissues along the respective rays,
and their exact spatial distribution cannot in general be recovered from the projection image.

However, using fuzzy segmentation techniques,4 pixels in projection images can be assigned probability distri-
butions of tissues that the respective ray transversed. Hard segmentation techniques that assign a unique label to
each pixel are obviously not useful here since there is no single tissue that corresponds to a projection pixel. While
one cannot expect the assigned distributions to be correct for each pixel, there is hope that they model the overall
projection process quite well.
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Other than hard segmentation data, fuzzy segmented images do not have scalar pixel intensities but are vector-
valued. In order to use this kind of image information in intensity-based image registration, existing algorithms can
be modified to handle the probabilistic data. This paper describes an image similarity measure for probabilistic
images, which is an extension of existing algorithms that optimize similarity measures computed from the joint
probability distribution function. For a particular pose (position and orientation) of a CT image, we compute a
probabilistic DRR (pDRR) by generating a histogram of CT intensities along each projection ray. Each pixel in
the probabilistic DRR image therefore corresponds to a distribution of CT values along the ray that resulted in the
projection value at that pixel. For the corresponding projection pixel, we compute a similar distribution using a
fuzzy segmentation algorithm developed in related work of our group.4 The outer product of both distributions is
computed, resulting in a 2-D joint histogram for each projection ray. The superposition of these histograms for all
rays defines a combined joint histogram from which we compute mutual information by discrete entropy calculation.

We present in detail the methodology of our novel probabilistic similarity criterion and give a first brief evaluation
of its accuracy and robustness properties. The similarity measure is computed for a range of translations and
rotations of a 3-D CT image in the neighborhood of a known registration with a 2-D x-ray projection, determined
using implanted markers. From the resulting plots, we estimate the expected capture range and registration accuracy
using our criterion.

2. METHODS

2.1. Deterministic and probabilistic DRR

Three-dimensional CT and 2-D x-ray projection imaging are based on roughly the same physical processes.5,6 After
traversing a homogeneous piece of matter with attenuation coefficient µ and thickness d, an x-ray with initial intensity
J0 is detected with a remaining intensity

Jd = J0e
−µd. (1)

Conversely, the attenuation coefficient can be determined by measuring the initial and remaining x-ray intensity and
computing

µ =
lnJ0 − lnJd

d
. (2)

For a continuous path L in space through a heterogeneously attenuating object, the total attenuation µL along L is
equal to the integral

µL =
∫ ∞

−∞
µ(L(t)). (3)

For paths of finite length, the integral in the above equation can be discretely approximated by a finite sum if the
attenuation coefficient is only sampled at N discrete locations xi with a uniform spacing δ. In particular, consider
a linear path (i.e., ray) originating from a ray source at location s that reaches an x-ray detector at location xdet.
Then the location of the i-th sample along the ray is

xi = s+ id (4)

with the normalized direction vector
d = δ

xdet − s
‖xdet − s‖ . (5)

The total number of samples along the ray is defined by means of the distance between the location s of ray source
and the location xdet of the detector for this particular ray:

N =
‖xdet − s‖

δ
. (6)

Deterministic DRR. The effective attenuation corresponding to the remaining intensity detected at xdet is the
DRR value at this location and can, analog to the integral in Eq. (3), be written as discrete sum

DRR(xdet) = δ
N−1∑
i=0

µ(xi) (7)
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Probabilistic DRR. For the ray associated with the detector position xdet we define the probabilistic DRR (pDRR)
the distribution P of intensities µ sampled discretely along this ray:

pDRR(xdet, c) = P [µ(xi) = c | 0 ≤ i < N ]. (8)

In order to save computation time, the range of samples visited along the ray is restricted to the actual intersection
of ray and 3-D image. This is achieved by computing the index Iin of the entry point of the ray into the volume and
the index Iout of the exit point. This is efficiently achieved by solving a system of inequalities, originally described in
an algorithm for 3-D line clipping on viewport boundaries by Liang and Barsky.7 The probabilistic DRR can thus
be equivalently rewritten as

pDRR(xdet, c) = P [µ(xi) = c | 0 ≤ Iin ≤ i ≤ Iout < N ]. (9)

For a particular pose (position and orientation) of a CT image, we compute a pDRR by generating a histogram
of CT intensities along each projection ray. Each pixel in the pDRR image therefore corresponds to a distribution
of CT values along the ray that resulted in the projection value at that pixel. In order to avoid interpolation, the
original intensities along the ray are entered into the histogram. The proximity of each voxel to the ray is taken into
account by adding to the respective histogram bin only a fractional value between 0 and 1 identical to the weight
that would otherwise be used for this voxel in the interpolation. We will later in this paper apply the same principle
in order to handle non-scalar, in our particular case probabilistic, data during the computation of histogram-based
similarity measures (see Section 2.3).

2.2. Background detection

Clinical CT images usually show the region of interest of the patient’s body embedded in air. This is useful to
ensure that the image boundaries do not crop the presentation of the patient, which would lead to incorrect DRR
computation due to missing data. From an image processing point of view, the object of interest is thus surrounded
by more or less extended regions of image background, easily detected by its low pixel intensities.

For standard DRR computation, values close to zero have no substantial effect on the result. However, when
computing the distribution of intensities along a ray, the background pixels do have a substantial impact on the
result. On the other hand, one cannot ignore all voxels identified as background by an intensity threshold, as this
would also remove voxels that represent air-filled cavities inside the patient’s body or surface folds. Both obviously
carry important information about the shape and distribution of tissues inside the patient.

Instead of simple thresholding, a finite state machine (FSM)8 is implemented to distinguish between air-filled
cavities inside the object and surface folds, voxels from which are included in the resulting tissue distribution, and
image background, voxels from which are discarded (see Fig. 2). The FSM is initialized in the “Background” state
with two histograms, “Hray” and “Htemp” initialized as empty distributions. While “Hray” is used to construct the
histogram of inside-patient voxel values along the ray, “Htemp” is a temporary histogram that takes up potential
background voxels (voxels with values below the threshold T ) as long as it has not been decided whether they are
inside a cavity or outside the object.

Upon encountering the first voxel with intensity greater than or equal to T , the FSM switches to the “Foreground”
state, in which it remains as long as all voxel intensities remain above T . When a voxel below the T is encountered in
“Foreground” state, the FSM switches to the “Cavity” state, indicating that this voxel and all subsequent voxels
with intensities below T may in fact be inside the patient. This is confirmed if and when another voxel intensity
above T is encountered. In this case, the voxels transversed inside the cavity and stored in “Htemp” are collectively
added to “Hray”, “Htemp” is reset, and the FSM goes back into the “Foreground” state.

If the end point of the ray is encountered while in the “Cavity” state (which should usually be the case unless
the field-of-view is cropped), then all voxels in “Htemp” have been determined to be outside the object and are
discarded.

2.3. Probabilistic mutual information

The mutual information (MI) image similarity measure9,10 has been used with great success in the registration of
3-D to 3-D images11 (single or multi modality). Based on our previous experience, we usually apply the normalized
mutual information12 (NMI) image similarity measure that is derived from MI. Both measures are usually computed

Proc. SPIE Vol. 4684 583



R
el

at
iv

e
Fr

eq
ue

nc
y

Bon
e

M
us

cleFatAir

CT Intensity

Figure 1. Foreground, background and air-filled cavities along a ray. Voxels along the dotted parts of the ray are
image background and need to be removed from the ray histogram. Voxels in air-filled cavities inside the patient are
useful information and should be entered into the ray histogram (right).

v >= T

v >= T

v < T

Add v to Htemp

Add v and Htemp to Hray

v >= T

Add v to Hray

v < T

Add v to Htemp

v < T

CavityForegroundAdd v to HrayBackground

Figure 2. Finite state machine to distinguish image background from air-filled cavities and surface folds. The lower
object voxel threshold is denoted by T , the intensity of the next voxel along the ray is denoted by v. The inequalities
over each arrow indicate the condition that leads to the respective state transition. The textual description under
the arrows is the operation performed upon this transition.

from discrete 2-D histograms. A 2-D histogram is a matrix B for which each row corresponds to a range of voxel
intensities of one of the two images, and each column corresponds to a range of voxel intensities of the other image.
A pair of corresponding voxels under the current coordinate transformation therefore indexes one of the matrix fields
(see Fig. 3). The 2-D histogram defined by two images and a particular transformation is the matrix for which every
entry has the value that equals the number of corresponding voxel pairs indexing this entry.

In 3-D to 3-D image registration, the voxel intensities of one of the two images (the “floating” or “interpolation
image”) need to be determined at the voxel locations of the other image (“reference image”). Different methods
can be used to enter the resulting voxel pairs into the 2-D histogram. The most straightforward techniques involve
computing an interpolated intensity value from the intensities of the eight voxels enclosing the respective location.
Let for example r be the intensity of a particular reference image voxel and fi for i = 0, . . . , 7 the intensities of
the eight enclosing voxels in the floating image. Then one may increment the histogram bin indexed by r and the
interpolated floating voxel intensity f as follows, producing an updated histogram B′ as follows:

B′
r,f = Br,f + 1 where f =

7∑
i=0

wifi. (10)
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2-D histogram

w = 1

CT image

Projection pixel intensity

DRR projection value

Figure 3. Registration of CT and projection image using standard DRR and MI. For each projection pixel, the
DRR value along the corresponding ray is computed. The bin in the 2-D histogram indexed by this pair of values is
incremented by 1.

2-D histogram

Normalized 1-D histogram

Tissue distribution along ray

CT image

Projection pixel intensity

Figure 4. Registration of CT and projection image using probabilistic DRR and MI. For each projection pixel, the
distribution of CT intensities along the corresponding ray is computed. The histogram is normalized to total mass
1, and added to the row in the 2-D histogram that is indexed by the intensity of the current pixel in the projection
image.

The two most commonly used interpolation schemes, nearest neighbor and tri-linear interpolation, are both special
cases of the expression, each with a specific way of computing the interpolation coefficients wi.

Maes et al.10 suggested a technique called partial volume integration (PVI) that completely avoids intensity
interpolation. Instead of applying an interpolation scheme such as the one outlined above to the voxel intensities,
each of them is entered into the histogram with a weight that is determined by the tri-linear interpolation coefficients

2-D histogram

Normalized 1-D histogram

Tissue distribution along ray

CT image

Projection pixel soft segmentation

Figure 5. Registration of CT and soft-segmented projection image using probabilistic DRR and MI. For each
projection pixel, the distribution of CT intensities along the corresponding ray is computed. The histogram is
normalized to total mass 1, and added to the row in the 2-D histogram that is indexed by the intensity of the current
pixel in the projection image.
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Figure 6. Scaling of transformation parameters. A small increment δ is added separately to each parameter (here:
for one of the rotational parameters). For each of the eight corners of the 3-D image, the motion vector ∆p of
its projection in the projection image plane is computed. The step size for the given parameter in the current
optimization step is then determined such that the average magnitude of the motion vectors over all eight projected
corners (i.e., the effective global motion within the projection plane) is equal to a given value.

that would be applied in the particular situation. As the histogram is actually 2-D, this means that each of the values
is actually paired with the single value taken from the other image, and all pairs are entered into the histogram with
the respective weights.

B′
r,fi

= Br,fi + wi for i = 0, . . . , 7. (11)

This behavior can be understood as adding to the matrix B the result of the outer product of two vectors as follows.
One of the vectors is the unit column vector dT

r indexing the r-th row of B while the second vector is the distribution
of weights assigned to the columns of B:

B′ = B+ dT
r

(
7∑

i=0

widfi

)
, (12)

Here and in all following equations we assume that the respective vector dimensions match the number of rows and
columns of B, respectively. The interpolation weights wi are all between 0 and 1 with a total sum of 1. They can
therefore easily be re-interpreted as probabilities in a distribution of discrete values (see Fig. 4).

If both images are probabilistic, i.e., both have probability distributions assigned to their voxels rather than scalar
intensities (see Fig. 5), this principle can be generalized as follows:

B′ = B+

(
7∑

i=0

vidri

)T (
7∑

i=0

widfi

)
. (13)

We refer to the similarity measures MI and NMI computed from the histograms thus generated as probabilistic
MI (pMI), and probabilistic NMI (pNMI), respectively. Other entropy-based similarity measures based on 2-D
histograms can, of course, be evaluated as well. We have, however, not considered any of those yet.

2.4. Probabilistic DRRs and soft-segmented projection images

The idea of soft segmentation is to assign to each pixel or voxel not a single label but a vector of label probabilities.

Pixels in projection images are associated with a path in space (i.e., a projection ray) rather than a unique
location in 3-D space. Therefore, these pixels cannot be assigned a unique tissue label. Instead, one can interpret
the vector of label probabilities used in soft segmentation not as a vector of probabilities but as the a-posteriori
distribution of tissues along the associated ray. In a related paper4 our group describes techniques to reconstruct
these distributions from projection images with a known corresponding CT image but unknown mutual pose.

Obviously, the use of the resulting non-scalar images for the purpose of registration adds another level of non-scalar
behavior to the method for MI computation described above.
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2.5. Scaling of transformation parameters

Due to the projection geometry, not all parameters of the 3-D image transformation have equal effects on the
computed projection image. For example, translation of the 3-D image parallel to the projection plane leads to
substantially more motion in the projection image than translation orthogonal to the projection plane. Furthermore,
the effect of transformation parameter changes also depends on the current set of parameters, i.e., the current pose
of the 3-D image relative to the projection geometry.

For each 3-D transformation parameter a scaling factor (parameter weight) is computed such that when adding
accordingly weighted increments to the all parameters, the average motion of all projected voxels in the projection
plane is always equal to 1. A two-stage model is used to determine these parameter weights: A 3-D weight Wvol

describes the average 3-D motion induced by changing the given parameter, while a projection component WP

describes its effect after projection onto the projection plane. The total weight for the n-th transformation parameter
is the product of both components, i.e.,

W (n) = W
(n)
vol W

(n)
P . (14)

3-D component of parameter weights. For translational parameters, the 3-D weight is equal to 1, as each
translation by δ causes a global voxel motion equal to δ. Therefore, the 3-D weights for all translational parameters
are unity:

WTrans
vol = 1. (15)

For rotational parameters, we use the following approximation: All rotations are around an axis parallel to either
the x, y, or z coordinate axis. Also, all rotation axes run through the center of the volume. For rotation around the

axis parallel to z, the corners of the 3-D image have a distance of 1
2

√
Vx

2 + Vy
2 from the rotation axis, where Vx and

Vy are the world-coordinate sizes of the image in x and y direction, respectively. When incrementing the rotation
angle (in radians) around this axis by δ, the corners will move on a circular trajectory with arc length equal to their
distance from the axis multiplied by δ. As coordinates closer to the axis move less (points on the axis do not move
at all), we approximate the average motion throughout the whole volume as half this value. In total, the parameter
weight for rotation around a parallel to the z axis is

WRotZ
vol =

1√
Vx

2 + Vy
2
. (16)

A similar approximation can be performed for scaling and shearing parameters of a full affine coordinate transfor-
mation. For the context of this paper, however, these are irrelevant.

Projection component of parameter weights. In order to determine the projection component WP of a
transformation parameter weight, we analyze the motion of the projected corners of the 3-D image (see Fig. 6). For
each of the eight image corners, denoted v0,0,0 through v1,1,1, the motion vector ∆pi,j,k is computed when adding δ
to the n-th transformation parameter (yielding a 3-D transformation Tδ,n instead of T) and projecting the corner
vi,j,k according to the projection Π:

∆pi,j,k = Π(Tδ,n(vi,j,k))− Π(T(vi,j,k)) (17)

The magnitude of the resulting motion vectors in the projection plane is averaged over all eight corners

v̄ =
1
8

1∑
i,j,k=0

‖∆pi,j,k‖2. (18)

The projection component of the n-th transformation parameter’s weight is then the inverse of the average projected
corner motion, normalized by the parameter increment δ:

W
(n)
P =

δ

v̄
. (19)
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Patient #1 Patient #2

Figure 7. X-ray projection images acquired using amorphous silicon flat panel detectors. The image from patient
#1 (left) shows part of the lumbar spine; one of the vertebrae has previously been filled with (radio-opaque) bone
cement. The image from patient #2 (right) shows part of the pelvic bone. Each image contains three implanted
BB’s, which were used to determine the gold standard transformation between the 2-D projections and the 3-D CT
image. The original image resolution was 0.1275mm pixel size, but the images were resampled to 0.51mm pixel size
for increased SNR and more efficient processing. The field of view is 120× 120mm (240× 240 pixels). The distance
of the ray source from the center of the projection plane was 329 cm.

3. RESULTS

We assessed our probabilistic image similarity criterion using image data used for planning and motion compensation
in a system for robotic radiosurgery.13,14 The 2-D x-ray projection geometry was that of two fixed orthogonal
amorphous silicon flat panel detectors,15 which unlike C-arm fluoroscopes are not subject to warping artifacts due
to the earth’s magnetic field. The projection images therefore do not require any image de-warping and thus do
not contain BB’s that would otherwise cause image occlusion. Details of the projection geometry are given in the
caption of Fig. 7 and illustrated with two example x-ray projection images from two different patients. For each of
these patients, a 3-D CT image was also acquired using the following imaging parameters: 512× 512 pixels, 0.78mm
pixel size (patient #2: 0.84mm), 180 axial slices, 1.25mm slice distance.

In order to investigate the convergence properties of the pMI image similarity measure, we have applied it to
register probabilistic DRRs of the image data outlined above to deterministic DRRs of the same respective data set
(results are plotted in Figs. 8 and 9). This may appear meaningless, as both, the probabilistic and the deterministic
DRR, were computed from the very same data set. However, it needs to be noted that we do not compute an
intensity-based image similarity between two DRR images. Instead, we compute the similarity of a scalar DRR
image with a vector-valued image (the pDRR image). In this context, the registration of DRR and pDRR not
only makes sense, but provides for the only mathematically accurate way of comparing projections computed with
precisely the same pose and geometry. This is obviously never fully guaranteed with real image data.

The plots of the pMI image similarity measure in Figs. 8 and 9 show that pMI functions as a similarity measure.
For all translation and rotation parameters, there is a peak of the similarity function near the correct transformation.
For translational parameters, this peek extends beyond 20mm translations, indicating a wide capture range. The
peak for translation parallel to the dominant direction of the projection rays, the peak is rather flat, which is due to
the almost-parallel projection geometry and its almost negligible perspective scaling. For rotational parameters, the
capture range is about 3 degrees on either side of the optimum parameter. The shape of the similarity function is
particularly well-behaved with respect to rotation around the y axes (rotation within the coronal image plan). The
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Figure 8. Image similarity plots for pMI measure of patient #1 (lumbar spine). Top row: Image background
excluded (threshold -300 HU); bottom row: image background and soft tissue excluded (threshold +200 HU). The
horizontal axis of the diagrams is normalized to effective motion in the projection plane (see Section 2.5). The true
parameter ranges in 3-D were ±17mm for translation in x and z direction (parallel to projection plane), ±210mm
in y direction (orthogonal to projection plane), ±4.9 deg for rotations around the x and z axes, and ±4.3 deg for
rotations around the y axis.

removal of soft tissue in addition to image background (see Section 2.2) did not in general enhance the results we
found. Only for rotation around the x axis in patient #1 (Fig. 8), the peak of the similarity measure moves closer
to the theoretical optimum.

It has to be pointed out that when simultaneously considering a second, orthogonal projection, translation in y
direction behaves like translation in x and vice versa. Also, rotation around the x axis behaves like rotation around
the y axis. Therefore, the similarity function with respect to the respective transformation components makes up for
the rather poor discrimination properties along those parameters in the first projection image.

4. DISCUSSION

This paper has extended the concept of intensity-based image registration algorithms using similarity measures
computed from the joint probability distribution function to probabilistic image data. We have also introduced a
probabilistic extension to the concept DRRs, which associates with a ray the distribution of tissue- or grey-value
frequencies along that ray rather than a scalar ray sum. Our proposed probabilistic similarity measure shows
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Figure 9. Image similarity plots for pMI measure of patient #2 (pelvis). Top row: Image background excluded
(threshold -300 HU); bottom row: image background and soft tissue excluded (threshold +200 HU). The normalization
of the horizontal axes of all diagrams is identical to the one in Fig. 8.

promising convergence properties when applied to registration of pDRR and deterministic DRR images. In addition
to the application described in the scope of this paper, the probabilistic extension of histogram-based similarity
measures can also be applied to other kinds of probabilistic data, such as probabilistic atlases.

It is worth noting that the described procedure of computing pMI (pNMI) from pDRR is fundamentally equivalent
to back-projecting the real projection image into 3-D space and computing standard MI (NMI) between the 3-D image
and this back-projection. This observation may provide some justification for our method and explain to some extent
how and why it works. In comparison, however, our method avoids problems resulting from the non-orthogonal grid of
the back-projected data when working with the common projection geometries. Furthermore, our approach allows for
an easy detection of background vs. bone and air-filled cavities along each ray, and the integration of fuzzy-segmented
X-ray projections4 is straight forward.

Future work on this project will be mostly focused on carefully comparing the novel probabilistic method for
computing image similarity to existing image similarity measures. Also, as the fuzzy segmentation of projection
images grows more mature, we will investigate the additional benefits of integrating segmented projection images
into the registration process instead of the raw grey-value images.
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