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Abstract. It is well-known in the pattern recognition community that
the accuracy of classifications obtained by combining decisions made by
independent classifiers can be substantially higher that the accuracy of
the individual classifiers. In order to combine multiple segmentations we
introduce two extensions to an expectation maximization (EM) algo-
rithm for ground truth estimation based on multiple experts (Warfield
et al., MICCAI 2002). The first method repeatedly applies the Warfield
algorithm with a subsequent integration step. The second method is a
multi-label extension of the Warfield algorithm. Both extensions inte-
grate multiple segmentations into one that is closer to the unknown
ground truth than the individual segmentations. In atlas-based image
segmentation, multiple classifiers arise naturally by applying different
registration methods to the same atlas, or the same registration method
to different atlases, or both. We perform a validation study designed
to quantify the success of classifier combination methods in atlas-based
segmentation. By applying random deformations, a given ground truth
atlas is transformed into multiple segmentations that could result from
imperfect registrations of an image to multiple atlas images. We demon-
strate that a segmentation produced by combining multiple individual
registration-based segmentations is more accurate for the two EM meth-
ods we propose than for simple label averaging.

1 Introduction

One way to automatically segment an image is to perform a non-rigid registra-
tion of the image to a labeled atlas image; the labels associated with the atlas
image are mapped to the image being segmented using the resulting non-rigid
transformation [1]. This approach has two important components that determine
the quality of the segmentations, namely the registration method and the atlas.
Just as human experts typically differ slightly in their labeling decisions, differ-
ent registration methods produce different segmentations when applied to the
same raw image and the same atlas. Likewise, different segmentations typically
result from using different atlases. Therefore, each combination of a registration
algorithm with an atlas effectively represents a unique classifier for the voxels in
the target image.
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The atlas can be an image of an individual or an average image of multiple
individuals. Our group recently showed [2] that the choice of the atlas image
has a substantial influence on the quality of a registration-based segmentation.
Moreover, we demonstrated that by using multiple atlases, the segmentation
accuracy can be improved over using a single atlas (either an image of an in-
dividual or an average of multiple individuals). Specifically we showed that a
segmentation produced by combining multiple individual segmentations is more
accurate than the individual segmentations.1 This finding is consistent with the
observation that a combination of classifiers is generally more accurate than an
individual classifier in many pattern recognition applications.

Typically among the individual segmentations there are more accurate ones
as well as less accurate ones. This is true for human experts, due to different
levels of experience, as well as for automatic classifiers, due, for example, to dif-
ferences in similarities between the image to be segmented and different atlases.
In this paper we present and evaluate methods that automatically estimate the
classifiers’ segmentation qualities and take these into account when combining
the individual segmentations into a final segmentation. For binary segmentations
(object vs. background), Warfield et al. [3] recently introduced an expectation
maximization (EM) algorithm that derives estimates of segmentation quality
parameters (sensitivity and specificity) from segmentations of the same image
performed by several experts. Their method also enables the generation of an
estimate of the unknown ground truth segmentation. This ground truth estimate
can provide a way of defining a combined segmentation that takes into account
all experts, weighted by their individual reliability. We introduce two extensions
of the Warfield method to non-binary segmentations with arbitrary numbers of
labels. We also perform an evaluation study to quantitatively compare different
methods of combining multiple segmentations into one. Our study is specifically
designed to model situations where the segmentations are generated by non-rigid
registration of an image to atlas images.

2 Binary Multi-expert Segmentation

This section briefly reviews the Warfield algorithm [3] and introduces the fun-
damental notation. Our notation differs slightly from that used by the original
authors in order to simplify notation for the multi-label extension proposed be-
low.

In binary segmentation, every voxel in a segmented image is assigned either
0 or 1, denoting background and object, respectively. For any voxel i, let T (i) ∈
{0, 1} be the unknown ground truth, i.e., the a priori correct labeling. It is
assumed that the prior probability g(T (i) = 1) of the ground truth segmentation
of voxel i being 1 is uniform (independent of i). During the course of the EM

1 Each individual registration was produced by non-rigid registration of an image to
a different atlas that is a labeled image of a reference individual. The combination
was performed by simple label averaging.
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algorithm, weights W (i) are estimated, which denote the likelihood that the
ground truth for voxel i is 1, i.e., W (i) = P (T (i) = 1).

Given segmentations by K experts, we denote by Dk(i) the decision of “ex-
pert”2 k for voxel i, i.e., the binary value indicating whether voxel i has been
identified as object voxel by expert k. Each expert’s segmentation quality is
represented by values pk and qk. While pk denotes the likelihood that expert k
identifies an a priori object voxel as such (sensitivity), qk is the likelihood that
the expert correctly identifies a background voxel (specificity).

2.1 Estimation Step

Given estimates of the sensitivity and specificity parameters for each expert, the
weights for all voxels i are calculated as

W (i) =
g(T (i) = 1)α

g(T (i) = 1)α + (1 − g(T (i) = 0))β
(1)

where

α =
( ∏

k:Dk(i)=1

pk

)( ∏
k:Dk(i)=0

(1 − pk)
)

and β =
( ∏

k:Dk(i)=0

qk

)( ∏
k:Dk(i)=1

(1 − qk)
)

.

(2)

2.2 Maximization Step

From the previously calculated weights W , the new estimates p̂k and q̂k for each
expert’s parameters are calculated as follows:

p̂k =

∑
i:Dk(i)=1 W (i)∑

i W (i)
and q̂k =

∑
i:Dk(i)=0(1 − W (i))∑

i(1 − W (i))
. (3)

2.3 Application to Multi-label Segmentation

An obvious way to apply Warfield’s algorithm (described above) to multi-label
segmentation is to apply it repeatedly and separately for each label. In each
run, one of the labels is considered as the object in the sense of the algorithm.
This strategy, however, may lead to inconsistent results, i.e., some voxels can
be assigned multiple labels (in other words, voxels can be classified as object
voxels in more than one run of the algorithm). To address this issue, we propose
to combine the results of all runs as follows: each application of the algorithm
provides sensitivity and specificity estimates for all experts for one label (the
label that is considered the object of interest in this run of the algorithm). These
values are used to compute the weights W (i) according to Eq. (1) separately for
2 In the context of the present paper, we use the term “expert” for the combination

of a non-rigid registration algorithm with an atlas image. However, the framework
we propose is also appropriate for human experts or any other kind of classifier.
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each label. The voxel i is then assigned the label that has the highest weight W .
One could instead use the weights W calculated during the last EM iteration
for each label, but this requires storing all weights. It is more memory efficient
and only slightly more computationally expensive to compute the weights once
more after all EM iterations have been completed.

3 Multi-label Multi-expert Segmentation

This section describes a multi-label extension to Warfield’s EM algorithm that
simultaneously estimates the expert parameters for all labels. This extension
contains Warfield’s algorithm as a special case for one label (L = {0, 1}). This
is easily proved by induction over the iterations of the algorithm.

For a multi-label segmentation let L = {0, . . . , L} be the set of (numerical)
labels in the atlas. Each element in L represents a different anatomical structure.
Every voxel in a segmented image is assigned exactly one of the elements of L
(i.e., we disregard partial volume effects), which defines the anatomical structure
that this voxel is part of. For every voxel i, let T (i) ∈ L be the unknown ground
truth, i.e., the a priori correct labeling. We assume that the prior probability
g(T (i) = �) of the ground truth segmentation of voxel i being � ∈ L is uniform
(independent of i). During the course of the algorithm, we estimate weights
W (i, �) as the current estimate of the probability that the ground truth for
voxel i is �, i.e., W (i, �) = P (T (i) = �).

Given segmentations by K experts, we denote by Dk(i) the decision of “ex-
pert” k for voxel i, i.e., the anatomical structure that, according to this expert,
voxel i is part of. Each expert’s segmentation quality, separated by anatomical
structures, is represented by a (L + 1) × (L + 1) matrix of coefficients λ. For
expert k, we define

λk(m, �) := P (T (i) = � | Dk(i) = m), (4)

i.e., the conditional probability that if the expert classifies voxel i as part of
structure m, it is in fact part of structure �. We note that this matrix is very
similar to the normalized confusion matrix of a Bayesian classifier [9]. The di-
agonal entries or our matrix (� = m) represent the sensitivity of the respective
expert when segmenting structures of label �, i.e.,

p
(�)
k = λk(�, �). (5)

The off-diagonal elements quantify the crosstalk between the structures, i.e.,
the likelihoods that the respective expert will misclassify one voxel of a given
structure as belonging to a certain different structure. The specificity of expert
k for structure � is computed as

q
(�)
k = 1 −

∑
m�=�

λk(m, �). (6)
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3.1 Estimation Step

In the “E” step of our EM algorithm, the (usually unknown) ground truth seg-
mentation is estimated. Given the current estimate for λ and the known expert
decisions D, the likelihood of the ground truth for voxel i being label � is

W (i, �) =
g(T (i) = �)

∏
k λk(Dk(i), �)∑

m [g(T (i) = m)
∏

k λk(Dk(i), m)]
. (7)

The likelihoods W for each voxel i are normalized and, over all labels, add up
to unity:

∑
�

W (i, �) =
∑

�

g(T (i) = �)
∏

k λk(Dk(i), �)
[
∑

m g(T (i) = m)
∏

k λk(Dk(i), m)]
(8)

=
∑

� [g(T (i) = �)
∏

k λk(Dk(i), �)]∑
m [g(T (i) = m)

∏
k λk(Dk(i), m)]

= 1. (9)

3.2 Maximization Step

The “M” step of our algorithm estimates the expert parameters λ to maximize
the likelihood of the current ground truth estimate determined in the preceding
“E” step. Given the previous ground truth estimate g, the new estimates for the
expert parameters are computed as follows:

λ̂k(�, m) =

∑
i:Dk(i)=� W (i, m)∑

i W (i, m)
. (10)

Obviously, since there is some label assigned to each voxel by each expert, the
sum over all possible decisions is unity for each expert, i.e.,

∑
�

λ̂k(�, m) =

∑
�

∑
i:Dk(i)=� W (i, m)∑

i W (i, m)
=

∑
i W (i, m)∑
i W (i, m)

= 1. (11)

The proof that the update rule in Eq. (10) indeed maximizes the likelihood of the
current weights W is tedious, but largely analogous to the proof in the binary
case (see Ref. [3]).

4 Implementation

Incremental Computation. Warfield et al. state in their original work [3] that for
each voxel they store the weight W , which expresses the current confidence esti-
mate for that voxel being an object voxel. When considering 3-D instead of 2-D
images, however, the memory required to store the (real-valued) weights W for
each voxel becomes a problem. For the multi-label algorithm introduced in Sec-
tion 3, the situation is even worse, since it would require storing as many weights
per voxel as there are labels in the segmentation. Fortunately, it is possible to
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perform the EM iteration without storing the weights, instead propagating the
expert parameters estimated in the M-step of the previous iteration directly to
the M-step of the next iteration.

Inspection of Eq. (3) for the binary algorithm and Eq. (10) for the multi-label
algorithm reveals that the computation of the next iteration’s expert parameters
requires only the sums of all weights W for all voxels as well as for the subsets of
voxels for each expert that are labeled the same by that expert. In other words,
the value W (i) (the values W (i, j) for all j in the multi-label case) is needed
only for one fixed i at any given time. The whole field W (i) (W (i, j) in the
multi-label case) need not be present at any time, thus relieving the algorithm
from having to store an array of N floating point values (N ·L in the multi-label
case). The weights W from Eq. (1) can instead be recursively substituted into
Eq. (3), resulting in the incremental formulas

p̂k =

∑
i:Dk(i)=1

g(T (i)=1)α
g(T (i)=1)α+(1−g(T (i)=0))β∑

i
g(T (i)=1)α

g(T (i)=1)α+(1−g(T (i)=0))β

, (12)

q̂k =

∑
i:Dk(i)=0(1 − g(T (i)=1)α

g(T (i)=1)α+(1−g(T (i)=0))β )∑
i(1 − g(T (i)=1)α

g(T (i)=1)α+(1−g(T (i)=0))β )
, (13)

where α and β are defined as in Eq. (2) and depend only on the parameters p and
q from the previous iteration and the (invariant) expert decisions. Analogously,
in the multi-label case the weights W from Eq. (7) can be recursively substituted
into Eq. (10), resulting in the incremental formula

λ̂k(�, m) =

∑
i:Dk(i)=�

∏
k′ λk′(Dk′(i), m)∑

i

∏
k′ λk′(Dk′(i), m)

. (14)

Restriction to Disputed Voxels. Consider Eqs. (1) and (7) and let us assume that
for some voxel i, all experts have made the same labeling decision and assigned
a label �. Let us further assume that the reliability of all experts for the assigned
label is better than 50%, i.e., pk > 0.5 for all k during the �-application of the
repeated binary method, or λk(�, �) > 0.5 in the multi-label method. It is then
easy to see that voxel i will always be assigned label �. We refer to such voxels as
undisputed . Conversely, we refer to all voxels where at least one expert disagrees
with the others as disputed .

Mostly in order to speed up computation, but also as a means of eliminating
image background, we restrict the algorithm to the disputed voxels. In other
words, where all experts agree on the labeling of a voxel, that voxel is assigned
the respective label and is not considered during the iterative optimization pro-
cedure. In addition to the obvious performance benefit, it is our experience that
this restriction actually improves the quality of the segmentation outcome. To
understand this phenomenon, consider application of the binary EM algorithm
to an image with a total of N voxels that contains a structure n voxels large.
Take an expert who correctly labeled the n foreground voxels, but mistakenly
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labeled m additional background voxels as foreground. This expert’s specificity
is therefore q = (N−n)−m

N−n . By increasing the field of view, thus adding peripheral
background voxels, we can increase N arbitrarily. As N approaches infinity, q ap-
proaches 1, regardless of m. Therefore, we lose the ability to distinguish between
specific and unspecific experts as the amount of image background increases.
Due to limited floating-point accuracy this is a very real danger, and it explains
why, in our experience, it is beneficial to limit consideration to disputed voxels
only.

5 Volume-Weighted Label Averaging

As a reference method for the two EM algorithms above, a non-iterative label
averaging algorithm is implemented. The fundamental function of this method
is to assign to each voxel in the final segmentation the label that was assigned
to this voxel by the (relative) majority vote of the experts [4]. However, the
situation we are interested in is slightly different. Instead of presenting an image
to a human expert, each expert in our context is merely a non-rigid coordinate
transformation from an image into an atlas. Since the transformation is continu-
ous, while the atlas is discrete, more than one voxel in the atlas may contribute
to the labeling of each image voxel. The contributing atlas voxels can (and will
near object boundaries) have different labels assigned to them.

The simplest way to address this situation is to employ nearest-neighbor in-
terpolation. However, it is our experience that it is a better idea to use Partial
Volume Integration (PVI) as introduced by Maes et al. [5] in order to properly
consider fractional contributions of differently labeled voxels. For a quick review
of PVI, consider a voxel i to be segmented. From each of the k expert segmenta-
tions, looking up the label for this voxel under some coordinate transformation
yields an 8-tuple of labels � from a 2 × 2 × 2 neighborhood of voxels in the
atlas, numbered 0 through 7. Each voxel is also assigned a weight w based on
its distance from the continuous position described by the non-rigid image-to-
atlas coordinate mapping. Therefore, each expert segmentation for each voxel
produces an 8-tuple Xk(i) of label-weight pairs:

Xk(i) = ((w(0)
k , �

(0)
k ), . . . , (w(7)

k , �
(7)
k )). (15)

For each expert, all weights of atlas voxels with identical labels are added:

Wk(�) =
∑

j=0...7,

�
(j)
k =�

w
(j)
k . (16)

In what is commonly referred to as “Sum fusion” [4], the image voxel is finally
assigned the label with the highest total weight summed over all experts, i.e.,

arg max
�

∑
k

Wk(�). (17)
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6 Validation Study

The goal of the algorithms described above is to improve the accuracy of seg-
mentation results by taking into account estimates of all experts’ segmentation
qualities. We are particularly interested in the case where each expert is an in-
stance of a non-rigid registration method combined with an atlas image. Unlike
statistics-based methods, atlas-based segmentation is by nature capable of, and
typically aims at, labeling anatomical structures rather than tissue types. As an
atlas is usually comprised of continuously defined objects, multiple independent
atlas-based segmentations differ by deformation of these objects, rather than by
noise (sparse pixels of different labels within a structure). The validation study
described below is designed accordingly.

An increasingly popular non-rigid registration method was originally intro-
duced by Rueckert et al. [6]. It applies free-form deformations [7] based on B-
spline interpolation between uniform control points. We implemented this trans-
formation model and simulate imperfect segmentations by applying random de-
formations to a known atlas. Each randomly deformed atlas serves as a model of
an imperfect segmentation that approximates the original atlas. Several of these
deformed atlases are combined into one segmentation using the methods de-
scribed in the previous sections. Since the original (undeformed) atlas is known,
it provides a valid ground truth for the results of all three methods.

6.1 Atlas Data

In order to ensure that the underlying undeformed atlas is meaningful and rel-
evant, we did not generate a geometric phantom. Instead, we used real three-
dimensional atlases derived from confocal microscopies of the brains of 20 adult
foraging honey bees (see Ref. [8] for details). Each volume contained 84–114
slices with thickness 8 µm and each slice had 610–749 pixels in x direction and
379–496 pixels in y direction with pixel size 3.8 µm. In each individual image, 22
anatomical structures were distinguished and labeled.

For each ground truth, random B-spline-based free-form deformations were
generated by adding independent Gaussian-distributed random numbers to the
coordinates of all control points. The control point spacing was 120µm, cor-
responding to approximately 30 voxels in x and y direction and 15 voxels in
z direction. The variances of the Gaussian distributions were σ = 10, 20, and
30 µm, corresponding to approximately 2, 4, and 8 voxels in x and y direction
(1, 2, and 4 voxels in z direction). Figure 1 shows examples of an atlas after
application of several random deformations of different magnitudes. A total of
20 random deformations were generated for each individual and each σ. The ran-
domly deformed atlases were combined into a final atlas once by label averaging,
and once using each of our novel algorithms.

6.2 Algorithm Parameters

Initialization. The expert parameters were initialized as follows. In the binary
case, p and q were set to 0.9 for all experts. In the multi-label case, λk(�, �)
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σ = 10µm σ = 20µm σ = 30µm

Warp
#1

Warp
#2

Warp
#3

Overlay

Fig. 1. Examples of a randomly deformed atlas. Each image shows a central axial slice
from the same original atlas after application of a different random deformation. Within
each column, the magnitudes of the deformations (variance of random distribution of
control point motion) were constant. The images in the bottom row show overlays of
the isocontours from the three images above to emphasize the subtle shape differences.

was initialized as 0.9 for all k and all �. The off-diagonal elements were set to
(1 − λk(�, �))/L.

Convergence Criterion. We are interested in processing large amounts of image
data with many labels. In order to keep computation times somewhat reasonable,
we do not wait for actual convergence of the results. Instead, we perform a fixed
number of iterations, typically 7. In the validation study described below, our
experience was that in the final iteration typically only one out of 10,000 voxels
changed its value.

6.3 Evaluation

For every registration, the registration-based segmentation is compared with the
manual segmentation. As one measure of segmentation quality we compute the
global segmentation correctness measure C, which we define as the fraction of
voxels for which the automatically generated registration-based segmentation
matches the manually assigned labels:

C =

∑
s

∣∣∣V (s)
comb ∩ V

(s)
GT

∣∣∣∑
s |V (s)

GT |
. (18)
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Fig. 2. Mean correctness C of combined segmentation over 20 individuals vs. number
of random segmentations used. Results are shown for PVI label averaging (AVG),
repeated application of the binary EM algorithm (EMbin), and the multi-label EM
algorithm (EMmulti). Each method was applied to atlases after random deformations
of magnitudes σ = 10 µm (left diagram), σ = 20 µm (center), and σ = 30 µm (right).
The dashed line in each graph shows the average correctness achieved by the respective
set of individual atlases with no combination method.

where V
(s)
GT and V

(s)
comb denote the sets of indices of the voxels labeled as belonging

to structure s in the undeformed ground truth (GT) and the combined estimated
segmentation (comb), respectively.

6.4 Results

Figure 2 shows a plot of the mean correctness over all 20 individuals versus the
number of segmentations. Both EM algorithms performed consistently better,
i.e., produced more accurate combined segmentations, than simple label averag-
ing. The improvement achieved using the EM strategies was larger for greater
magnitudes of the random atlas deformations. Between the two EM methods, re-
peated application of the binary algorithm outperformed the multi-label method.
For all algorithms, adding additional segmentations increased the accuracy of the
combined segmentation. The incremental improvement obtained by adding an
additional segmentation decreased as the number of atlases increased. The fig-
ure also nicely illustrates the superiority of using multiple atlases over using just
one: in all cases, the individual correctnesses are substantially lower than any
of the combined results. Again, the difference increases as the magnitude of the
random deformations is increased.

7 Discussion

This paper has several new ideas. First, based on a novel interpretation of the
term “expert”, we propose to combine multiple registration-based segmenta-
tions into one in order to improve segmentation accuracy. Second, we introduce



220 T. Rohlfing, D.B. Russakoff, and C.R. Maurer

two multi-label extensions to an EM algorithm [3] for ground truth estimation
in binary segmentation. Finally, we evaluate the segmentation quality of the
two methods and a combined segmentation method based on simple label av-
eraging. Effectively, this paper introduces the principle of combining multiple
classifiers [4,9] to atlas-based image segmentation. In fact, the multi-label EM
algorithm presented here can be understood as a learning method for the con-
fusion matrix of a Bayesian classifier [9].

The quantitative evaluation of segmentation accuracy using random defor-
mations of a known atlas demonstrated that both methods introduced in this
paper produce better segmentations than simple label averaging. This is true
despite the natural advantage that label averaging has by being able to consider
fractional label contributions using PVI. Both EM algorithms described here
more than make up for this inherent disadvantage. This finding is particularly
significant as our previous research showed that combining multiple registration-
based segmentations by label averaging already produces results that are better
than the individual segmentations [2]. This finding, which corresponds to the
experience of the pattern recognition community that multiple classifier systems
are generally superior to single classifiers [4], was also confirmed by the validation
study performed in this paper.

Between the two EM methods, the repeated application of a binary EM al-
gorithm was superior to a dedicated multi-label algorithm, but at substantially
increased computation cost. However, this may be different for different atlas
topologies. Assume, for example, that there is an adjacency relationship be-
tween two anatomical structures in the form that one encloses the other. In this
case, the crosstalk between classifications of both structures may be beneficial
to consider, which is precisely what our novel multi-label EM algorithm does.

It should be mentioned that, like the original Warfield algorithm, our meth-
ods and their validation are based on several assumptions regarding the nature
of the input data. Most notably, we assume that the errors of the individual
segmentations are somewhat independent. In the presence of systematic errors
made by all or at least a majority of the experts, the same error will very likely
also appear in the final ground truth estimate. This problem, however, is not
restricted to the machine experts that we focused on in this paper. In fact,
since the individual training and experience of human experts are not mutually
independent (in fact, similarity in training and expertise is what makes us con-
sider someone an expert with respect to a certain problem), the same is true for
manual segmentations.

While seemingly similar, the situation we address with the validation study in
this paper is fundamentally different from validation of non-rigid registration. A
promising approach to validating non-rigid image registration involves simulating
a known deformation using a biomechanical model. The simulated deformation
is taken as the ground truth against which transformations computed using
non-rigid registration can be validated. In that context, it is important that the
simulated deformation be based on a different transformation model than the
registration, for example, a B-spline-based registration should not be validated
using simulated B-spline deformations.
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In our context, however, the opposite is true. In this paper, we validated
methods for combining different automatic segmentations generated by non-
rigid registration. In this framework it makes sense (and is, in fact, necessary
to correctly model the problem at hand) that the randomly deformed segmen-
tations are generated by applying transformations from the class used by the
registration algorithm. Only in this way can we expect to look at variations in
the segmentations comparable to the ones resulting from imperfect non-rigid
registration.
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