
MSCS with Distinction in Research Final Report

Scene Text Recognition with Convolutional Neural Networks

Tao Wang

Stanford University, 353 Serra Mall, Stanford, CA 94305

twangcat@cs.stanford.edu

Primary Advisor: Andrew Y. Ng

Secondary Advisor: Daphne Koller

Abstract

Full end-to-end text recognition in natural images

is a challenging problem that has received much atten-

tion recently. Traditional systems in this area have re-

lied on elaborate models incorporating carefully hand-

engineered features or large amounts of prior knowl-

edge. In this work, we take a different route and com-

bine the representational power of large, multilayer

neural networks together with recent developments in

unsupervised feature learning, which allows us to use

a common framework to train highly-accurate text de-

tector and character recognizer modules. Then, us-

ing only off-the-shelf methods with simple engineer-

ing, we integrate these two modules into a full end-

to-end, lexicon-driven, scene text recognition system

that achieves state-of-the-art performance on standard

benchmarks, namely Street View Text and ICDAR 2003.

1 Introduction

Extracting textual information from natural images

is a challenging problem with many practical applica-

tions. Unlike character recognition for scanned docu-

ments, recognizing text in unconstrained images is com-

plicated by a wide range of variations in backgrounds,

textures, fonts, and lighting conditions. As a result,

many text detection and recognition systems rely on

cleverly hand-engineered features [7, 6, 18] to repre-

sent the underlying data. Sophisticated models such as

conditional random fields [15, 26] or pictorial structures

[24] are also often required to combine the raw detec-

tion/recognition outputs into a complete system.

In this paper, we attack the problem from a differ-

ent angle. For low-level data representation, we use an

unsupervised feature learning (UFL) algorithm that can

automatically extract features from the given data. Such

algorithms have enjoyed numerous successes in many

related fields such as visual recognition [4] and action

recognition [11]. In the case of text recognition, the

system in [3] achieves competitive results in both text

detection and character recognition using a simple and

scalable feature learning architecture incorporating very

little hand-engineering and prior knowledge.

We integrate these learned features into a large,

discriminatively-trained convolutional neural network

(CNN). CNNs have enjoyed many successes in similar

problems such as handwriting recognition [12], visual

object recognition [2], and character recognition [21].

By leveraging the representational power of these net-

works, we are able to train highly accurate text detec-

tion and character recognition modules. Using these

modules, we can build an end-to-end system with post-

processing techniques which only requires simple engi-

neering like non-maximal suppression (NMS)[17] and

beam search [20]. Despite its simplicity, our system

achieves state-of-the-art performance on standard test

sets.

2 Our Previous Work

Prior to this work, we went through a number of re-

lated investigations, which allow us to gain enough evi-

dence and insight to develop the final end-to-end sys-

tem. Here we briefly discuss some of our previous

works.

Our approach to build detection and recognition

modules is largely inspired by the previous work of [3],

in which we achieved state-of-the-art results on cropped

character recognition using unsupervised feature learn-

ing and a one-layer CNN. The first layer filters are pre-

trained using a variant of K-means, and the top-layer

Figure 1: Character classification accuracy on ICDAR

as a function of number of first layer filters in [3].

(a) Distorted ICDAR

examples.

(b) Synthetic examples

Figure 2: Distorted and synthetic data used in [3].

classifier is trained using supervised learning with la-

beled examples. Experimental results in [3] suggest that

classification accuracy consistently increases as a func-

tion of the number of learned features, as shown in Fig-

ure 1. We also experimented with different ways of data

augmentation, including distortions and artificially syn-

thesized examples (See Figure 2).

As another form of contribution to the scene text

recognition field as well as the more general com-

puter vision community, we introduced the Street View

House Numbers (SVHN) dataset in [16], which focuses

on a restricted instance of the scene text recognition

problem: reading digits from house numbers in street

level images. As shown in Figure 3, SVHN contains

images of small cropped digits obtained from house

numbers in Google Street View images. It has similar

style as MNIST [5], but incorporates an order of magni-

tude more labeled data (over 600,000 digit images) and

represents the significantly harder, unsolved problem of

recognizing digits and numbers in natural scene images.

In order to obtain the large number of cropped and la-

beled digits with a relatively low cost, we leveraged the

Amazon Mechanical Turk (AMT) annotation toolbox

introduced in [23]. We pass the raw images through

Figure 3: Examples from the SVHN dataset

Figure 4: Example annotations by AMT workers

multiple AMT tasks to obtain first the word level, and

then the character level bounding boxes. Some exam-

ple result annotations by workers on AMT are shown in

Figure 4.

Apart from introducing the new SVHN dataset, we

also perform a number of experiments to compare dif-

ferent classifier models in [16]. As shown in Figure 5,

the model pretrained with our variant K-means feature

learning approach outperformed other models such as

HOG and stacked auto-encoders (SAE). We also no-

ticed that classification accuracy increases steadily as

more training examples are used. With findings in

these two works, we continue to explore the potential

of larger CNN models with multiple stacked layers, as

well as larger training set sizes.

Figure 5: 10-way Digit classification accuracy on

SVHN as a function of number of training examples in

[16].

32×32 25×25×96 5×5×96 4×4×256 2×2×256

Convolution

Average Pooling

Convolution

Average Pooling

Classification

[Non-Text]

[Text]

Figure 6: CNN used for text detection.

3 Learning Architecture

In this section, we describe our text detector and

character recognizer modules, which are the essential

building blocks of our full end-to-end system.

Given a 32-by-32 pixel window, the detector decides

whether the window contains a centered character. Sim-

ilarly, the recognizer decides which of 62 characters (26

uppercase, 26 lowercase letters, and 10 digits) is in the

window. As described at length in Section 4, we slide

the detector across a full scene image to identify can-

didate lines of text, on which we perform word-level

segmentation and recognition to obtain the end-to-end

results.

For both detection and recognition, we use a multi-

layer, convolutional neural network (CNN) similar to

[12, 21]. Our networks have two convolutional layers

with n1 and n2 filters respectively. The network we use

for detection with n1 = 96 and n2 = 256 is shown in

Figure 6, while a larger, but structurally identical one

(n1 = 115 and n2 = 720) is used for recognition.

3.1 Dataset

For text detection, we train a binary classifier that

decides whether a single 32-by-32 subwindow contains

Figure 7: Examples from our training set. Left: from

ICDAR. Right: synthetic data

text or not. Unlike our previous work [3], here we con-

sider positive examples to be examples where a com-

plete character appears centered in the window. Exam-

ples where the character is occluded, cropped, or off-

center are considered negatives. This particular distinc-

tion is made so that the detector will focus on iden-

tifying regions where the text is centered since such

windows are preferred for word-level recognition in the

subsequent part of the system.

Synthetic Training Data In our previous work [3],

we have used large synthetic datasets to achieve bet-

ter classification results. In this paper, we improved

our text synthesizer to generate higher quality synthetic

training images using a wider range of fonts. The num-

ber of images per character class are distributed accord-

ing to the unigram frequency obtained from the Brown

Corpus [8] so as to simulate the natural distribution of

character classes. In [3] we generate grayscale levels

of characters and the background from a uniform dis-

tribution. In this work, these grayscale levels are gen-

erated from Gaussian distributions with the same mean

and standard deviation as those in the ICDAR training

images. We also apply small amounts of Gaussian blur-

ing and projective transformations to a random portion

of the images and finally blend the images with natural

backgrounds to simulate background clutter. The re-

sulting synthetic images are shown alongside with real-

world characters cropped from the ICDAR 2003 dataset

in Figure 7. Our improved synthetic examples are much

more realistic compared to the artificial data (Figure 2)

we used in [3].

One advantage of using synthetic data is that we have

full control of the location of the text in the image, so

we can easily generate many types of negative exam-

ples (e.g. improperly scaled, improperly aligned, etc.)

to use as hard negatives, as illustrated in Figure 8. As

such, we have compiled a dataset consisting of exam-

ples from the ICDAR 2003 training images [14], the

English subset of the Chars74k dataset [6], and the sign-

reading dataset from Weinman, et al. [25], as well as

synthetically generated examples. In training the detec-

(a) Synthetic posi-

tives.

(b) Synthetic nega-

tives (spaces).

(c) Synthetic neg-

atives (bad align-

ment).

(d) Synthetic nega-

tives (bad scale).

Figure 8: Synthetic images used to train the detector and classifiers.

tor, our training set generally consists of 75,000 positive

examples and 150,000 negative examples; for the clas-

sification task, we use about 63,000 examples in total.

3.2 Unsupervised Feature Learning

We begin by using an unsupervised learning algo-

rithm to pretrain the filters used for both detection and

recognition. In recent years there has been many suc-

cesses of unsupervised feature learning (UFL) algo-

rithms in numerous domains. These algorithms attempt

to learn feature representations directly from the data, in

contrast to hand-engineered features that incorporates

prior knowledge. Some well-known UFL algorithms in-

clude sparse auto-encoder [1], sparse coding [19], Re-

stricted Boltzmann Machine (RBM) [9] and Indepen-

dent Component Analysis (ICA) [10].

Here, we use a UFL pipeline that resembles that de-

scribed in [3, 4]. We briefly outline the key components

of this system:

1. Collect a set of m small image patches from the

training set. As in [3], we use 8x8 grayscale

patches. This yields a set of m vectors of pixels

x̃(i) ∈ R
64, i ∈ {1, . . . ,m}.

2. Normalize each vector x̃(i) for brightness and con-

trast (subtract out the mean and divide by the stan-

dard deviation). We then whiten the patches x̃(i)

using ZCA whitening [10] to yield a new set of

vectors x(i).

3. Apply an unsupervised learning algorithm on the

preprocessed patches x(i) to build a mapping from

an input image I to its features z. In this pa-

per, we adhere to the variant of the K-means algo-

rithm described in [3] where we learn a dictionary

D ∈ R
64×n1 containing n1 normalized basis vec-

tors. Having learnt D, we describe how to compute

features z in Section 3.3.

In Figure 9, we have shown some of the learnt first

layer filters.

Figure 9: Examples of the our learnt first layer filters

3.3 Convolutional and Pooling Layers

The two-layer convolutional architecture we use for

text detection is given in Figure 6. Note that we use the

same architecture to train the character classifier, ex-

cept that n1 = 115 and n2 = 720. The larger num-

ber of features is due to the fact that the character rec-

ognizer is performing 62-way classification rather than

binary classification, and thus, requires a more expres-

sive model. For the first convolutional layer, we use

the set of learnt filters D. More specifically, given a

filter (kernel) Dj (which is obtained by reshaping one

row of D to 8-by-8 pixels) and a 32-by-32 input image

I , the response is given by rj = I ⋆ Dj where ⋆ de-

notes the 2-D convolution operator. Note that we only

evaluate rj’s over windows that are completely within

the bounds of the patch. The application of each filter

over the image patch yields a 25-by-25 response. After

evaluating each filter, we stack all rj’s to arrive at a 25-

by-25-by-n1 response r as the output for the first layer.

As in [3], we apply a scalar, nonlinear activation func-

tion to the responses to obtain the first layer features

z = max{0, |r| − α} where α is a hyperparameter. In

this work, we take α = 0.5.

As is standard in the literature on convolutional ar-

chitectures, we now apply a spatial pooling step. This

has the benefit of reducing the dimensionality of the

features at each layer as well as providing the model

a degree of translational invariance. Here, we opt for

average pooling, in which we sum over the values in a

5-by-5 grid over the 25-by-25-by-n1 features. We then

stack another convolutional and average pooling layer

on top of the outputs from the first layer. The outputs

of this second layer consist of a 2-by-2-by-n2 response.

This output feeds into a fully connected classification

layer which is trained with supervised fine-tuning.

3.4 Supervised Fine-tuning

In [3], we only train the top-layer classifier with

supervised learning, and the low-level features were

trained with unsupervised learning In this work, we dis-

criminatively train the network by backpropagating the

L2-SVM classification error in the form of a squared

hinge loss: max{0, 1 − θTx}2, while we fix the filters

in the first convolution layer (D learned from K-means).

Given the size of the networks, fine-tuning is performed

by distributing data across multiple machines using a

map-reduce framework.

4 End-to-End Pipeline Integration

Our full end-to-end system combines a lexicon

with our detection/recognition modules using post-

processing techniques including NMS and beam search.

Here we assume that we are given a lexicon (a list of

tens to hundreds of candidate words) for a particular im-

age. As argued in [24], this is often a valid assumption

as we can use prior knowledge to constrain the search

to just certain words in many applications. The pipeline

mainly involves the following two stages:

(i) We run sliding window detection over high res-

olution input images to obtain a set of candidate

lines of text. Using these detector responses, we

also estimate locations for the spaces in the line.

(ii) We integrate the character responses with the can-

didate spacings using beam search [20] to obtain

full end-to-end results.

These two stages are described in details below.

4.1 Text Line Detection

First, given an input image, we identify horizontal

lines of text using multiscale, sliding window detec-

tion. At each scale s, we evaluate the detector response

Rs[x, y] at each point (x, y) in the scaled image. As

R
e
sp
o
n
se

−4

0

4

R
e
sp
o
n
se

0

6

3N
M
S

R
a
w

Figure 10: Detector responses in a line.

shown in Figure 11b, windows centered on single char-

acters at the right scale produce positive Rs[x, y], rep-

resented by the bright squares. We apply NMS [17] to

Rs[x, r] in each individual row r to estimate the char-

acter locations on a horizontal line. In particular, we

define the NMS response

R̃s[x, r] =







Rs[x, r] if Rs[x, r] ≥ Rs[x
′, r],

∀x′ s.t. |x′ − x| < δ
0 otherwise

(1)

where δ is some width parameter. For a row r with

non-zero R̃s[x, r], we form a line-level bounding box

Lr
s (see Figure 10) with the same height as the slid-

ing window at scale s. The left and right boundaries

of Lr
s are defined as min{x : R̃s[x, r] > 0} and

max{x : R̃s[x, r] > 0}, which are the locations of the

left and right most peaks of R̃s[x, r]. This yields a set

of possibly overlapping line-level bounding boxes. We

score each box by averaging the nonzero peak values

of R̃s[x, r] over the number of peaks. We then apply

standard NMS to remove all L’s that overlaps by more

than 50% with another box of a higher score, and obtain

the final set of line-level bounding boxes L̃. Since gaps

between words produce sharply negative responses, we

also estimate possible space locations within each Lr
s by

applying the same NMS technique as above to the neg-

ative responses. Note that this heuristic assumes that

text run horizontally, which is true in most real cases.

In practice, we found our approach capable of detecting

text lines with angles that are less than 10 degrees to the

x-axis of the image.

4.2 Joint Word Segmentation and Recogni-
tion

After identifying the horizontal lines of text, we

jointly segment the lines of text into words and recog-

nize each word in the line. Given a line-level bound-

ing box L and its candidate space locations, we eval-

uate each possible word-level bounding boxes using a

(a) Sample image from ICDAR dataset. (b) Detector responses from multiple scales.

Figure 11: Multi-scale response from text detector.

Figure 12: Character classifier scores over an example patch

Viterbi-style algorithm and find the best segmentation

scheme using a beam search technique similar to [13].

To evaluate a word-level bounding box B, we slide the

character recognizer across it and obtain a 62×N score

matrix M , where N is the number of sliding windows

within the bounding box. Figure 12 shows the plot of

the elements in one column of M , which corresponds

to the 62-way classifier outputs in one sliding window.

Intuitively, a more positive M(i, j) suggests a higher

chance that the character with index i is centered on

the location of the jth window. Similar to the detection

phase, we perform NMS over M to select the columns

where a character is most likely to be present. The other

columns of M are set to −∞. We then find the lexicon

word w∗ that best matches a score matrix M as follows:

given a lexicon word w, compute the alignment score

Sw
M = max

lw∈Lw





|w|
∑

k

M(wk, l
w
k)



 (2)

where lw is the alignment vector1 between the char-

acters in w and the columns of M . Sw
M can be com-

puted efficiently using a Viterbi-style alignment algo-

rithm similar to [22]. In practice, we also augment Sw
M

with additional terms that encourage geometric consis-

tency. For example, we penalize character spacings that

are either too narrow or vary a lot within a single word.

We compute Sw
M for all lexicon words and label the

word-level bounding-box B with the highest scoring

word w∗. We take SB = Sw∗

M to be the recognition

score of B.

Having defined the recognition score for a single

bounding box, we can now systematically evaluate pos-

sible word-level segmentations using beam search [20],

a variant of breadth first search that explores the top

N possible partial segmentations according to some

heuristic score. In our case, the heuristic score of a can-

didate segmentation is the sum of the SB’s over all the

resulting bounding boxes in a line of text L.

Figure 13 illustrates two beam search steps on one

of the text lines. At the top of the figure is a line-level

bounding box generated by the procedure described in

Section 4.1. The vertical blue lines denote the candidate

space positions. We have set the threshold for generat-

ing candidate spaces relatively low, so that we capture

almost every true space, at the expense of many false

spaces. Given the number of candidate spaces p (p = 5
in Figure 13), there are p+1 candidate segments. Each

segment can stand alone as a single word, or join with

adjacent segments to form a longer word. For every

predicted word, we compute its associated recognition

1For example, lw
4

= 6 means the 4
th character in w aligns with

the 6
th column of M , or the 6

th sliding window in a line of text.

Figure 13: Illustration of beam search steps on a single

line of text. Segmentations that are clearly wrong are

pruned early due to low recognition scores

score SB . Words with SB’s lower than a threshold t
are treated as “Non-Text”, and their SB’s are set to t.
In Figure 13 we used t = 0, but in practice we vary t
to obtain precision-recall curves. In the first branch of

Figure 13, the segment with actual letter ’E’ is recog-

nized as word ’REEL’ with SB = −2.14 (the number in

brackets), and thus assigned as Non-Text. In the second

branch, segments ’E’ and ’S’ are joint and recognized

as the word ’EST’ with SB = 0.318.

The beam search algorithm tries to find an assign-

ment to the segments so that the sum of SB’s is max-

imized. In principle, the search algorithm has to enu-

merate exponential number of assignment schemes in

the worst case. However, we find that keeping the top

N = 60 search paths works well. In Figure 13, we use

N = 4 for clarity. Notice that at depth 2, only the top 4

scoring search paths survive, and the rest are pruned.

The beam search algorithm stops when all paths are

pruned or reach the end, and the highest scoring path

gives the predicted words.

5 Experimental Results

5.1 Results on ICDAR 2003 and SVT Bench-
marks

In this section we present a detailed evaluation of our

text recognition pipeline. We measure cropped charac-

Table 1: Cropped word recognition accuracies on IC-

DAR 2003 and SVT

Benchmark I-WD-50 I-WD SVT-WD

Our approach 90% 84% 70%

Wang, et al. [24] 76% 62% 57%

Mishra, et al. [15] 82% - 73%

Figure 14: Examples from the I-WD benchmark

ter and word recognition accuracies, as well as end-to-

end text recognition performance of our system on the

ICDAR 2003 [14] and the Street View Text (SVT) [24]

datasets. Apart from that, we also perform additional

analysis to evaluate the importance of model size on dif-

ferent stages of the pipeline.

First we evaluate our character recognizer module

on the ICDAR 2003 dataset. Our 62-way character

classifier achieves state-of-the-art accuracy of 83.9% on

cropped characters from the ICDAR 2003 test set. The

best known previous result on the same benchmark is

81.7% reported by [3]

Our word recognition sub-system is evaluated on im-

ages of perfectly cropped words from the ICDAR 2003

and SVT datasets, as illustrated in Figure 14 We use

the exact same test setup as [24]. More concretely, we

measure word-level accuracy with a lexicon containing

all the words from the ICDAR test set (called I-WD),

and with lexicons consisting of the ground truth words

for that image plus 50 random “distractor” words added

from the test set (called I-WD-50). For the SVT dataset,

we used the provided lexicons to evaluate the accuracy

(called SVT-WD). Table 1 compares our results with

[24] and the very recent work of [15].

We evaluate our final end-to-end system on both the

ICDAR 2003 and SVT datasets, where we locate and

recognize words in full scene images given a lexicon.

For the SVT dataset, we use the provided lexicons; for

the ICDAR 2003 dataset, we used lexicons of 5, 20 and

50 distractor words provided by the authors of [24], as

well as the “FULL” lexicon consisting of all words in

the test set. We call these benchmarks I-5, I-20, I-50

and I-FULL respectively. Like [24], we only consider

alphanumeric words with at least 3 characters. Figure

16 shows some sample outputs of our system. We fol-

low the standard evaluation criterion described in [14]

to compute the precision and recall. Figure 15 shows

precision and recall plots for the different benchmarks

on the ICDAR 2003 dataset.

As a standard way of summarizing results, we also

0.52 0.56 0.6 0.64 0.68
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

I−5

I−20

I−50

Recall

P
re
c
is
io
n

Figure 15: End-to-end PR curves on ICDAR 2003

dataset using lexicons with 5, 20, and 50 distractor

words.

report the highest F-scores over the PR curves and com-

pare with [24] in Table 2. Our system achieves higher

F-scores in every case. Moreover, the margin of im-

provement is much higher on the harder benchmarks

(0.16 for I-FULL and 0.08 for SVT), suggesting that

our system is robust in more general settings.

5.2 Extension to a General Lexicon

In addition to settings with a known lexicon, we also

extend our system to the more general setting by using

a large lexicon L of common words. Since it is infea-

sible to search over all lexicon words in this case, we

limit our search to a small subset P ∈ L of “visually

plausible” words. We first perform NMS on the score

matrix M across positions and character classes to ob-

tain a set of response peaks similar to the ones seen in

Figure 10, but with each peak representing an appropri-

ate character class at that location. We then threshold

this response with different values to obtain a set of raw

strings. The raw strings are fed into Hunspell2 to yield a

set of suggested words as our smaller lexicon P . Using

this simple setup, we achieve scores of 0.54/0.30/0.38

(precision/recall/F-score) on the ICDAR dataset. This

is comparable to the best known result 0.42/0.39/0.40

obtained with a general lexicon by [18].

5.3 Control Experiments on Model Size

In order to analyze the impact of model size on dif-

ferent stages of the pipeline, we also train detection and

2Hunspell is an open source spell checking software available at

http://hunspell.sourceforge.net/. We augment Hunspell’s default lex-

icon with a corpus of English proper names to better handle text in

scenes.

Figure 16: Example output bounding boxes of our end-to-end system on I-FULL and SVT benchmarks. Green: correct

detections. Red: false positives. Blue: misses.

Table 2: F-scores from end-to-end evaluation on IC-

DAR 2003 and SVT datasets.

Benchmark I-5 I-20 I-50 I-FULL SVT

Our approach .76 .74 .72 .67 .46

Wang, et al. [24] .72 .70 .68 .51 .38

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
82

84

86

88

90

92

94

96

98

Relative Model Size

C
la

ss
i!

ca
ti

o
n

 A
cc

u
ra

cy

62−way accuracy of recognition module

2−way accuracy of detection module

C180

C360
C720

D256D128D64

Figure 17: Accuracies of the detection and recognition

modules on cropped patches

recognition modules with fewer second layer convolu-

tional filters. The detection modules have n2 = 64 and

128 compared to 256 in our full model. We call the de-

tection modules D64, D128 and D256 respectively. Sim-

ilarly, we call the recognition modules C180, C360 and

C720, which corresponds to n2 = 180, 360 and 720.

The smaller models have about 1/4 and 1/2 number of

learnable parameters compared to the full models.

To evaluate the performance of the detection mod-

ules, we construct a 2-way (character vs. non-character)

classification dataset by cropping patches from the IC-

DAR test images. The recognition modules are eval-

uated on cropped characters only. As shown in Fig-

ure 17, the 62-way classification accuracy increases as

Table 3: Classification and end-to-end results of differ-

ent recognition modules

Recognition module C180 C360 C720

Classification accuracy 82.2% 83.4% 83.9%

End-to-end F-score .6330 .6333 .6723

model size gets larger, while the 2-way classification re-

sults remain unchanged. This suggests that larger model

sizes yield better recognition modules, but not necessar-

ily better detection modules.

Finally, we evaluate the 3 different recognition mod-

ules on the I-FULL benchmark, with D256 as the detec-

tor for all 3 cases. The end-to-end F-scores are listed

against the respective classification accuracies in Table

3. The results suggests that higher character classifi-

cation accuracy does give rise to better end-to-end re-

sults. This trend is consistent with the findings of [16]

on house number recognition in natural images.

6 Conclusion

In this paper, we have considered a novel approach

for end-to-end text recognition. By leveraging large,

multi-layer CNNs, we train powerful and robust text

detection and recognition modules. Because of this

increase in representational power, we are able to use

simple non-maximal suppression and beam search tech-

niques to construct a complete system. This represents

a departure from previous systems which have gener-

ally relied on intricate graphical models or elaborately

hand-engineered systems. As evidence of the power

of this approach, we have demonstrated state-of-the-

art results in character recognition as well as lexicon-

driven cropped word recognition and end-to-end recog-

nition. Even more, we can easily extend our model to

the general-purpose setting by leveraging conventional

open-source spell checkers and in doing so, achieve per-

formance comparable to state-of-the-art.

Acknowledgements

This work is acomplished in close colaboration

with David J. Wu. David developed the text detection

modules which are the key compenents of our final

end-to-end system. I would also like to thank Adam

Coates, who gave us many invaluable advices. This

work would not be possible without the great support

from Adam and David.

References

[1] Y. Bengio, P. Lamblin, D. Popovici, and H. Larochelle.

Greedy layer-wise training of deep networks. In Neural

Information Processing Systems, 2006.

[2] D. C. Ciresan, U. Meier, J. Masci, L. M. Gambardella,

and J. Schmidhuber. High performance neural net-

works for visual object classification. Technical Report

IDSIA-01-11, Dalle Molle Institute for Artificial Intel-

ligence, 2011.

[3] A. Coates, B. Carpenter, C. Case, S. Satheesh,

B. Suresh, T. Wang, D. J. Wu, and A. Y. Ng. Text de-

tection and character recognition in scene images with

unsupervised feature learning. In ICDAR, 2011.

[4] A. Coates, H. Lee, and A. Y. Ng. An analysis of single-

layer networks in unsupervised feature learning. In AIS-

TATS, 2011.

[5] Courant Institute, NYU and Google Labs, New York.

The MNIST Database.

[6] T. E. de Campos, B. R. Babu, and M. Varma. Character

recognition in natural images. In VISAPP, 2009.

[7] B. Epshtein, E. Oyek, and Y. Wexler. Detecting text in

natural scenes with stroke width transform. In CVPR,

2010.

[8] W. N. Francis and H. Kucera. Brown corpus man-

ual. Technical report, Department of Linguistics, Brown

University, Providence, Rhode Island, US, 1979.

[9] G. Hinton, S. Osindero, and Y. Teh. A fast learning

algorithm for deep belief nets. Neural Computation,

18(7):1527–1554, 2006.

[10] A. Hyvarinen and E. Oja. Independent component anal-

ysis: algorithms and applications. Neural networks,

13(4-5):411–430, 2000.

[11] Q. V. Le, W. Y. Zou, S. Y. Yeung, and A. Y. Ng. Learn-

ing hierarchical invariant spatio-temporal features for

action recognition with independent subspace analysis.

In CVPR, 2011.

[12] Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E.

Howard, W. Hubbard, and L. D. Jackel. Backpropaga-

tion applied to handwritten zip code recognition. Neural

Computation, 1:541–551, 1989.

[13] C.-L. Liu, M. Koga, and H. Fujisawa. Lexicon-driven

segmentation and recognition of handwritten character

strings for japanese address reading. IEEE Trans. Pat-

tern Anal. Mach. Intell., 24(11):1425–1437, Nov. 2002.

[14] S. Lucas, A. Panaretos, L. Sosa, A. Tang, S. Wong, and

R. Young. ICDAR 2003 robust reading competitions.

ICDAR, 2003.

[15] A. Mishra, K. Alahari, and C. V. Jawahar. Top-down

and bottom-up cues for scene text recognition. In

CVPR, 2012.

[16] Y. Netzer, T. Wang, A. Coates, A. Bissacco, B. Wu, and

A. Y. Ng. Reading digits in natural images with unsu-

pervised feature learning. In NIPS Workshop on Deep

Learning and Unsupervised Feature Learning, 2011.

[17] A. Neubeck and L. Gool. Efficient non-maximum sup-

pression. In ICPR, 2006.

[18] L. Neumann and J. Matas. A method for text localiza-

tion and recognition in real-world images. In ACCV,

2010.

[19] B. A. Olshausen and D. J. Field. Emergence of simple-

cell receptive field properties by learning a sparse code

for natural images. Nature, 381(6583):607–609, 1996.

[20] S. J. Russell, P. Norvig, J. F. Candy, J. M. Malik, and

D. D. Edwards. Artificial intelligence: a modern ap-

proach. Prentice-Hall, Inc., Upper Saddle River, NJ,

USA, 1996.

[21] Z. Saidane and C. Garcia. Automatic scene text recogni-

tion using a convolutional neural network. In Workshop

on Camera-Based Document Analysis and Recognition,

2007.

[22] S. Sarawagi and W. W. Cohen. Semi-markov con-

ditional random fields for information extraction. In

NIPS, pages 1185–1192, 2004.

[23] A. Sorokin and D. Forsyth. Utility data annotation with

amazon mechanical turk. In First IEEE Workshop on

Internet Vision at CVPR, 2008.

[24] K. Wang, B. Babenko, and S. Belongie. End-to-end

scene text recognition. In ICCV, 2011.

[25] J. Weinman, E. Learned-Miller, and A. R. Hanson.

Scene text recognition using similarity and a lexicon

with sparse belief propagation. In Transactions on

Pattern Analysis and Machine Intelligence, volume 31,

2009.

[26] J. J. Weinman, E. Learned-Miller, and A. R. Hanson. A

discriminative semi-markov model for robust scene text

recognition. In ICPR, Dec. 2008.

