![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Online Learning in The Manifold of Low-Rank Matrices U. Shalit, D. Weinshall, G. Chechik Neural Information Processing Systems (NIPS spotlight) 2010 |
![]() |
PDF|
supplement |
![]() |
![]() |
![]() |
Activity motifs reveal principles of timing in
transcriptional control of the yeast metabolic network G. Chechik, E. Oh, O. Rando, J. Weissman, A. Regev and D. Koller Nature Biotechnology, 26(11) pp 1251-1259. Nov 2008 , Local PDF version Activity motifs web-page | Research Highlights in Nat Chem Biology, Nat Reviews genetics |
![]() |
web-page
|
bibtex Local PDF version Online Text version |
![]() |
![]() |
![]() |
Functional Organization of the S. cerevisiae Phosphorylation Network D. Fiedler, H. Braberg, M. Mehta, G. Chechik, G. Cagney, P. Mukherjee, and A.C. Silva, M. Shales, S.R. Collins, S. van Wageningen, P. Kemmeren, F.C.P. Holstege, J.S. Weissman, M. Christopher-Keogh, D. Koller, K.M. Shokat, and N.J. Krogan Cell, 136(5) 952-63. 2009 |
![]() |
![]() |
|
![]() |
![]() |
Timing properties of gene expression responses to
environmental changes G. Chechik and D. Koller J. Computational Biology. Vol 16, p. 279-290, 2009 |
![]() |
web-page Local PDF (long) |
![]() |
![]() |
![]() |
Reduction of Information Redundancy in the Ascending Auditory Pathway G. Chechik, M. Anderson, O. Bar-Yosef, E. Young, N. Tishby and I. Nelken Neuron 51 (3), 359-368, 2006. Full Text | PDF News-and-views by J. Schnupp; Accompanying web-page. Faculty of 1000 |
![]() |
web-page
| PDF News and views Faculty of 1000 |
![]() |
![]() |
![]() |
Temporal and Cross-Subject Probabilistic Models for fMRI Prediction Tasks Alexis Battle, Gal Chechik and Daphne Koller Neural Information Processing Systems NIPS 2006; Human Brain Mapping 2006; 3rd prize, 2006 EBC competition.. |
![]() |
NIPS PDF bibtex |
![]() |
![]() | |||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
20. Large scale online Learning of Image Similarity through ranking G. Chechik, V. Sharma, U. Shalit, S. Bengio J. Machine Learning Research. 11 p. 1109-1135, 2010, OASIS web-page |
![]() |
web-page |
code Local PDF version |
![]() |
![]() |
![]() |
19. Sound retrieval and ranking using auditory sparse-code representations
RF. Lyon, M. Rehn, T. Walters, S. Bengio, G. Chechik Neural Computation, 22(9) 2390-2416, 2010 |
![]() |
![]() |
|
![]() |
![]() |
18. Activity motifs reveal principles of timing in
transcriptional control of the yeast metabolic network G. Chechik, E. Oh, O. Rando, J. Weissman, A. Regev and D. Koller Nature Biotechnology, 26(11) pp 1251-1259. Nov 2008 |
![]() |
web-page
|
bibtex Local PDF version Online Text version |
![]() |
![]() |
![]() |
17. Functional Organization of the S. cerevisiae Phosphorylation Network D. Fiedler, H. Braberg, M. Mehta, G. Chechik, G. Cagney, P. Mukherjee, and A.C. Silva, M. Shales, S.R. Collins, S. van Wageningen, P. Kemmeren, F.C.P. Holstege, J.S. Weissman, M. Christopher-Keogh, D. Koller, K.M. Shokat, and N.J. Krogan Cell, 136(5) 952-63. 2009 |
![]() |
![]() |
|
![]() |
![]() |
16. Timing properties of gene expression responses to
environmental changes G. Chechik and D. Koller J. Computational Biology. Vol 16, p. 279-290, 2009 |
![]() |
web-page Local PDF (long) |
![]() |
![]() |
![]() |
15. Max Margin classification of data with absent features Gal Chechik, Geremy Heitz, Gal Elidan, Pieter Abbeel and Daphne Koller Journal of Machine Learning Research, JMLR, 9(Jan):1--21, 2008 |
![]() |
![]() online |
![]() |
![]() |
![]() |
14. Euclidean Embedding of Co-occurrence Data. Amir Globerson, Gal Chechik, Fernando Pereira and Naftali Tishby Journal of Machine Learning Research, JMLR, 8 (Oct), 2007 |
![]() |
![]() |
![]() |
![]() |
![]() |
13. Information theory in auditory research Israel Nelken, Gal Chechik Hearing Research 229, p. 94-105, 2007 |
![]() |
![]() |
![]() |
![]() |
![]() |
12. Reduction of Information Redundancy in the Ascending Auditory Pathway G. Chechik, M. Anderson, O. Bar-Yosef, E. Young, N. Tishby and I. Nelken Neuron 51 (3), p. 359-368, 2006. |
![]() |
![]() News-and-views | web-page |
![]() |
![]() |
![]() |
11. Discrete profile alignment via information bottleneck. S. O'Rourke, G. Chechik, R. Friedman, and E. Eskin BMC bioinformatics, 7(S1):S8, Feb 2006, p. 1-11. |
![]() |
![]() |
![]() |
![]() |
![]() |
10. Encoding stimulus information by spike numbers and mean response time in primary auditory cortex. I. Nelken, G. Chechik, T.D. Mrsic Flogel A.J. King and J.W.H. Schupp J. Computational Neuroscience 19(2):199-221, 2005 |
![]() |
![]() |
![]() |
![]() |
![]() |
9. Information Bottleneck for Gaussian variables. G. Chechik, A. Globerson, N. Tishby and Y. Weiss J. Machine Learning Research 6(Jan) p.165-188, 2005 |
![]() |
![]() |
![]() |
![]() |
![]() |
8. Applying an artificial neural network to warfarin maintenance dose prediction. I. Solomon, N. Marashak, G. Chechik, L. Leibovici, A. Lubetsky, H. Halkin, D. Ezra and N. Ash Isr. Med. Assoc. J., 6(12): 732-735, 2004 |
![]() |
Abstract | |
![]() |
![]() |
7. Spike timing dependent plasticity and relevant information maximization. Gal Chechik Neural Computation 15 (7) p.1481-1510, 2003 |
![]() |
![]() |
![]() |
![]() |
![]() |
6. Effective Learning with Ineffective Hebbian Learning Rules. Gal Chechik, Isaac Meilijson, and Eytan Ruppin Neural Computation 13(4) p.817-840, 2001 |
![]() |
![]() |
![]() |
![]() |
![]() |
5. Spike time dependent plasiticty and mutual information maximization Gal Chechik, Isaac Meilijson, and Eytan Ruppin Neurocomputing, 38: 147-152,2001 |
![]() |
![]() |
|
![]() |
![]() |
4. Neuronal normalization provides effective learning through ineffecive learning rules. Gal Chechik, Isaac Meilijson, and Eytan Ruppin Neurocomputing, 32:345-351, 2000 |
![]() |
![]() |
![]() |
![]() |
![]() |
3. Neuronal Regulation: A Mechanism for Efficient Synaptic Pruning During Brain Maturation. Gal Chechik, Isaac Meilijson, and Eytan Ruppin Neural Computation 11(8) p. 2151-2170. 1999 |
![]() |
![]() |
![]() |
![]() |
![]() |
2. Neuronal regulation: A biologically plausible mechanism for efficient synaptic pruning in development Gal Chechik, Isaac Meilijson, and Eytan Ruppin Neurocomputing, 26-27: 633-639, 1999 |
![]() |
![]() |
|
![]() |
![]() |
1. Synaptic pruning in development: a computational account. Gal Chechik, Isaac Meilijson, and Eytan Ruppin Neural Computation 10 (7) p.1759-1777, 1998 |
![]() |
![]() |
![]() |
![]() | |||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
25. Online Learning in The Manifold of Low-Rank Matrices U. Shalit, D. Weinshall, G. Chechik Neural Information Processing Systems (NIPS spotlight) 2010 |
![]() |
PDF|
supplement |
![]() |
![]() |
![]() |
24. Object Separation In X-Ray Image Sets GA Heitz, G. Chechik Computer Vision and Pattern Recognition (CVPR, oral) 2010 |
![]() |
PDF |
![]() |
![]() |
![]() |
23. Large scale online Learning of Image Similarity through ranking G. Chechik, V. Sharma, U. Shalit, S. Bengio Neural Information Processing System, NIPS 2009 |
![]() |
web-page
|
code Local PDF version |
![]() |
![]() |
![]() |
22. Large-Scale Content-Based Audio Retrieval
from Text Queries. Gal Chechik, Eugene Ie, Martin Rehn, Samy Bengio, Dick Lyon Multimedia information retrieval, MIR 2008. |
![]() |
![]() |
![]() |
![]() |
![]() |
21. Max Margin classification of incomplete data. Gal Chechik, Geremy Heitz, Gal Elidan, Pieter Abbeel and Daphne Koller Neural Information Processing Systems, NIPS 2006. |
![]() |
![]() |
![]() |
![]() |
![]() |
20. Temporal and Cross-Subject Probabilistic Models for fMRI Prediction Tasks Alexis Battle, Gal Chechik and Daphne Koller Neural Information Processing Systems NIPS 2006 |
![]() |
![]() |
|
![]() |
![]() |
19. Euclidean Embedding of Co-occurrence Data Outstanding student paper award A. Globerson, G. Chechik, F. Pereira and N. Tishby Neural Information Processing Systems, NIPS 2004 p.497-504. |
![]() |
![]() |
![]() |
![]() |
![]() |
18. Embedding Heterogeneous Data Using Statistical Models. A. Globerson, G. Chechik, F. Pereira and N. Tishby American Association for Artificial Intelligence (AAAI) 2006, Nectar Track |
![]() |
![]() |
![]() |
![]() |
![]() |
17. Filling missing enzymes in metabolic pathways using heterogeneous data. Gal Chechik, Aviv Regev and Daphne Koller NIPS Computational Biology workshop, Whistler 2005 |
![]() |
![]() |
![]() |
![]() |
![]() |
16. Changes in Stimulus representations in the ascending auditory pathway G. Chechik, M. Anderson, O. Bar-Yosef, E. Young, N. Tishby and I. Nelken COSYNE 2005 |
![]() |
![]() |
![]() |
![]() |
![]() |
15. Discrete profile alignment via information bottleneck Sean O'Rourke, Gal Chechik, Robin Friedman and Eleazar Eskin NIPS 2004 |
![]() |
![]() |
![]() |
![]() |
![]() |
14. A needle in a haystack: Local one class optimization Koby Crammer and Gal Chechik, International conference in machine learning, ICML 2004 |
![]() |
![]() |
![]() |
![]() |
![]() |
13. Information Bottleneck for Gaussian Variables. Gal Chechik, Amir Globerson, Naftali Tishby and Yair Weiss NIPS 2003 |
![]() |
![]() talk-pdf |
![]() |
![]() |
![]() |
12. Extracting continuous relevant features. Amir Globerson, Gal Chechik and Naftali Tishby in: Daniel Baier and Klaus-Dieter Wernecke (eds.): Innovations in Classification, Data Science, and Information Systems. Proc. 27th Annual GfKl Conference, University of Cottbus, Germany 2003. Springer-Verlag, Heidelberg-Berlin, 224-238, 2004. |
![]() |
![]() |
![]() |
![]() |
![]() |
11. Sufficient Dimensionality reduction with irelevance statistics. Amir Globerson, Gal Chechik and Naftali Tishby Uncertainty in artificial inteligence, Acapulco Mexico (UAI 2003) |
![]() |
![]() |
![]() |
![]() |
![]() |
10. Are there representations in evolved embodied agents? Taking measures. Hezi Avraham, Gal Chechik and Eytan Ruppin European conference on artificial life,(ECAL 2003) |
![]() |
![]() |
![]() |
![]() |
![]() |
9. Extracting relevant structures with side information.
Gal Chechik and Naftali Tishby Neural Information Processing Systems-15, NIPS 2002 |
![]() |
![]() short ver talk-ppt code |
![]() |
![]() |
![]() |
8. Groups redundancy measures reveal redundancy reduction along the auditory pathway. Gal Chechik, A. Globerson, M.J. Anderson, Eric D. Young, Israel Nelken and N. Tishby Neural Information Processing Systems-14, (NIPS 2001) |
![]() |
![]() |
![]() |
![]() |
![]() |
7. Spike time dependant plasticity and mutual information Gal Chechik and Naftali Tishby Advances in Neural Information Processing Systems 13, Vancouver Canada (NIPS 2000) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() Gal Chechik Ninth Annual Computational Neuroscience Meeting, Bruge Belgium (CNS 2000) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() Gal Chechik, Isaac Meilijson and Eytan Ruppin. Advances in Neural Information Processing Systems 12 (NIPS 1999) |
![]() |
![]() |
![]() |
![]() |
![]() |
4. Neuronal normalization provides effective learning through
ineffective synaptic learning rules. Gal Chechik, Isaac Meilijson and Eytan Ruppin. Eighth Computational Neuroscience meeting, Pittsburgh, Pennsylvania. (CNS 1999) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() Gal Chechik, Isaac Meilijson and Eytan Ruppin. Advances in Neural Information Processing Systems 11. (NIPS 1998) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() Gal Chechik, Isaac Meilijson and Eytan Ruppin Seventh Annual Computational Neuroscience Meeting, Santa Barbara, CA. (CNS 1998) |
![]() |
![]() |
![]() |
![]() |
![]() |
1. Synaptic Pruning: A Novel Account in Neural Terms. Gal Chechik, Isaac Meilijson, and Eytan Ruppin Sixth Annual Computational Neuroscience Meeting, CNS 1997 |
![]() |
![]() |
![]() |
![]() | |||||
![]() |
|||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
NIPS workshop on New Problems and Methods in Computational Biology. Yanjun Qi, Gal Chechik, editors, BMC bioinformatics, Volume 11 Suppl 8, 2010 |
![]() |
![]() |
![]() |
![]() |
![]() |
NIPS workshop on New Problems and Methods in Computational Biology. Gal Chechik, Christina Leslie, Gunnar Ratsch, Koji Tsuda, editors, BMC bioinformatics, Volume 7 Suppl 1, 2007 |
![]() |
![]() |
![]() |
![]() |
![]() |
NIPS workshop on New Problems and Methods in Computational Biology. Gal Chechik, Christina Leslie, Gunnar Ratsch, Koji Tsuda, editors, BMC bioinformatics, Volume 7 Suppl 1, 2005 |
![]() |
![]() |
![]() |
![]() |
![]() |
Information, Computation and Learning. (Hebrew) Gal Chechik, Lidror Troyanski and Naftali Tishby Hebrew University Press, 2003 |
![]() |
![]() |
![]() |
![]() | |||||
![]() | |||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() Gal Chechik, David Horn and Eytan Ruppin In M. Arbib editor, The handbook of Brain Theory and Neural networks. 2nd edition. MIT Press 2002 |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() Transformations of stimulus representations in the ascending auditory system. In: Auditory signal processing: physiology psychoacoustics and models, Eds. D. Pressnitzer A. de Cheveigne S. McAdams and L. Collet. Springer New York 223-229. 2004, |
![]() |
![]() |
![]() |
![]() | |||||
![]() | |||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Gal Chechik,![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Individual chapters
![]() Abstract Introduction Extracting information from spike trains Quantifying coding interactions Redundancy reduction in the auditory pathway Extracting relevant structures Summary Appendices |
![]() |
![]() |
![]() |
![]() | |||||
![]() | |||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() Types, Super types, and the mutual information distribution. Technical Report of the Leibniz Center, The Hebrew university. 2002-61 |
![]() |
![]() |
![]() |
![]() | |||||
![]() | |||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|||||
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Large scale online Learning of Image Similarity through ranking G. Chechik, V. Sharma, U. Shalit, S. Bengio The 4th Iberian Conference on Pattern Recognition and Image Analysis IbPRIA 2009 |
![]() |
![]() |
|
![]() |
![]() |
![]() Sound ranking using auditory sparse-code representations Proc. ICML: Workshop on Sparse Methods for Music Audio. (2009) |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() Redundancy reduction in the ascending auditory system Workshop on mathematical neuroscience. Montreal, 2007. |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() Its about Time: Transcription Timing in the Yeast Metabolic Pathway. Bioinformatics workshop, Graybill VI conference, Fort Collins, CO, 2007. |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() Filling missing components in yeast metabolic pathways using heterogeneous data. Computational biology workshop at NIPS 2005, Vancouver CA. |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() Separation of overlapping subpopulations by mutual information. Computational biology workshop at NIPS 2005, Vancouver CA. |
![]() |
![]() | /
![]() |
![]() |
![]() |
![]() Filling missing components in yeast metabolic pathways using heterogeneous data. 7th BioPathways Meeting at ISMB 2005. Detroit, 2005. |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() Information and redundancy in the auditory system. NIPS workshop on Estimation of entropy and information of undersampled distibutions: Theory and Applications to the neural code. Organized by I. Nemenman and W. Bialek, Whistler Canada 2003. |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() Extracting relevant structures using side information. NATO advanced study institute, learning theory and practice, Leuven Belgium 2002. |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() Redundancy reduction along the ascending auditory pathway. Society For Neuroscience meeting, San Diego CA 2001. |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() Spike time dependant plasticity and mutual information. The 9th Annual Meeting of Israeli neuroscience society, Eilat, Israel. 2000. |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() Effective learning requires neuronal remodeling of Hebbian synapses. Neural Computation in Science and Technology (NCST-99). Maale Hachamisha, Israel 1999. |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() Robust Associative Memory with Asymmetric Synaptic Learning Rules. The 8th Annual Meeting of Israeli neuroscience society Eilat, Israel (1999). |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() Enforcing Effective Synaptic Learning via a Neuronal Mechanism. NeuroScience letters. Supl 51. Proceedings of the 7th annual meeting of the Israeli Neuroscience Society. (1998). |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() Neuronal Regulation: A Mechanism For Efficient Synaptic Pruning During Brain Maturation. NeuroScience letters. Supl 51. Proceedings of the 7th annual meeting of the Israeli Neuroscience Society. (1998). |
![]() |
![]() |
![]() |
![]() | |||||
![]() |
|||||
![]() |